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1. Introduction 
 

Compounds which need a long time to degrade are said to be persistent. Persistent 

compounds are problematic because they can accumulate in the environment and possibly 

in organisms. They have the potential of spreading by water and air to different parts of the 

world where they can act on many species and ecosystems. Since persistent compounds 

will stay for a longer period in our surroundings it is possible that their damage will not be 

shown immediately but can immerse after a longer period of time.
1 

The European chemical regulation (REACH) requires information on the PBT (Persistent, 

Bioaccumulating and Toxic) properties of substances to identify the harm that can be posed 

to the environment or human health.
2 

 A substance is regarded as persistent in the REACH 

regulation when any of the following half-life’s are exceeded: 

- The degradation half-life in marine water is higher than 60 days; 

- The degradation half-life in fresh or estuarine water is higher than 40 days; 

- The degradation half-life in marine sediment is higher than 180 days; 

- The degradation half-life in fresh or estuarine water sediment is higher than 120 

days; 

- The degradation half-life in soil is higher than 120 days. 

Besides chemical half-life’s, other types of data can be used within REACH as indicators of 

persistency such as ready biodegradation which is a screening test for the assessment of 

biodegradability. In fact, REACH requires that all organic molecules produced or imported 

in more than one ton per year needs information on ready biodegradation. The PBT 

assessment should be performed in a weight of evidence approach considering all available 

information including alternatives to animal testing as for example in-vitro and in-silico 

results.
3
 Quantitative structure-activity relationship (QSAR) models are mentioned in 

REACH as a possible in-silico method which can be used in the assessment of chemicals 

(Annex XI in REACH).
2
 In order to use results from QSAR models within REACH, a 

model should comply with four conditions: 

(I) Results are derived from a (Q)SAR model whose scientific validity has been 

established;  

(II) The substance falls within the applicability domain of the (Q)SAR model; 

(III) Results are adequate for the purpose of classification and labeling and/or risk 

assessment; 

(IV) Adequate and reliable documentation of the applied method is provided. 
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In order to fulfill condition (I), the following five OECD principles of QSAR validation 

should be followed
4
:  

(1) A defined endpoint; 

(2) An unambiguous algorithm; 

(3) A defined domain of applicability; 

(4) Appropriate measures of goodness of fit, robustness and predictivity; 

(5) A mechanistic interpretation if possible. 

 

The focus of this research project was mainly on ready biodegradability. The final aim was 

to build a predictive QSAR model for ready biodegradation. In the first part of the project, a 

review of existing models on biodegradability was carried out in order to evaluate the 

classification performances of existing models and the type of descriptors used to model 

biodegradability. It was important that the experimental data used in QSAR modeling was 

in compliance with REACH and the data was therefore screened prior to modeling. The 

QSAR models were developed using different molecular descriptors and fingerprints 

together with the modeling method k-nearest neighbors (k-NN). It was investigated if the 

selection of few important molecular descriptors could improve the model statistics 

compared to models built with no selection of molecular descriptors. In the last part of the 

project, QSAR models were interpreted with knowledge from the literature on 

biodegradation. 

 

2. State of the art 
 

Several QSAR models have been developed in order to predict biodegradation (see Table 

1). Different types of data have been used in modeling (e.g. biodegradation half-life, expert 

judgment and biodegradation screening tests). Both fingerprints (i.e., vectorial descriptors 

with ones and zeros stating the presence and absence of selected structural features, 

respectively) and molecular descriptors have been used in modeling.  

Some structural features have been seen to increase the degradation time (e.g. halogens, 

chain branching, nitro groups, polycyclic residues, heterocyclic residues and aliphatic ether 

bonds).
1
 Other structural features have been found to decrease the time for biodegradation 

including esters, amides, hydroxyl groups, aldehyde groups, carboxylic acid groups, 

unbranched linear alkyne chains and phenyl rings.
1 

A number of physical-chemical 

properties have also been found to correlate with biodegradation. Water soluble molecules 

tend to be more easily biodegradable compared to non-soluble molecules.
5
 Also molecular 

weight has been found to be connected with biodegradability because molecules with a 

molecular weight above 500 cannot be transported across a bacterial cell membrane.
6
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Table 1: QSAR models on ready biodegradation with the non-error rate (NER) found in the literature. 

1
st
 Author Year Endpoint Method

a
 Training 

set
b 

External 

test set
b 

Fitting
a,b

 

(NER%) 
Cross-validation

a,b
 

(NER%) 
Test set validation

a,b 

(NER%) 

Geating7 1981 Biodegradation in water S-DA, RR 349  88.5   

Niemi8 1987 5-days BOD PCA, DA 287  92.0   

Boethling9 1989 Biodegradation in water MLR 46 23 (a) 

17 (b) 

80.4 (A) 

89.1 (B) 

 96.2 (A+a) 

82.0 (B+b) 

Howard10 1991 Aerobic biodegradation MLR 235  89.0 - 94.0   

Howard11 1992 Aerobic biodegradation MLR, LR 264 27 91.0 (MLR) 

90.0 (LR) 

 82.0 (MLR) 

89.0 (LR) 

Klopman5 1993 Aerobic biodegradation MLR 283 (I) 

153 (II) 

27  74.0 (I) 74.0 (I) 

86.0 (I+II) 

Boethling12 1994 Aerobic biodegradation MLR, LR 295  89.5 (MLR) 

93.2 (LR) 

  

Boethling12 1994 Ultimate and primary 

biodegradation 

MLR 200  82.5 (pri. bio) 

83.5 (ult. bio) 

  

Gamberger13 1996 Aerobic biodegradation Expert rules 45 (I) 

146 (II) 

40   87.5 (I) 

97.5 (II) 

Loonen14 1999 Ready biodegradation PLS-DA 894   81.0 – 84.0  

Tunkel15 2000 Ready biodegradation MLR, LR 589 295 82.0 (MLR) 

82.7 (LR) 

 81.4 (MLR) 

80.7 (LG) 

Huuskonen16 2001 Ultimate and primary 

biodegradation 

MLR, ANN 172 12 

57 

  84.0 (MLR) 

86.0 (ANN) 

Jaworska17 2002 Ready biodegradation CATABOL 532   (Q2 = 0.88)  

Alikhanidi18 2003 Biodegradation half-life DT 315 105 86.3  78.1 

Sakuratatani19 2005 Ready biodegradation CATABOL 743 338 (a) 
1123 (b) 

83  80.0 (a) 
81.0 (b) 

Sedykh20 2007 Ready biodegradation CG 1190   (r2 = 0.69)  

Cheng
21

 2012 Ready biodegradation SVM, k-NN, 

DT, NB 

1440 164 100 (k-NN) 

87.2 (SVM) 

 84.2 (k-NN) 

81.1 (SVM) 
a: S-DA: Stepwise discriminant analysis, DA: Discriminant analysis, RR: Ridge regression, PCA: Principal component analysis, MLR: Multiple linear 

regression, LR: Logistic regression, Expert rules: Two rules were generated with 3 statements in each, PLS-DA: Partial least squares-Discriminant analysis, 

ANN: Artificial neural networks, CATABOL: The CATABOL model used biodegration or degration transformations, DT: Decision tree CG: Conjugate 

gradient method by minimizing the standard sum of squared errors, SVM: support vector machines, k-NN: k-nearest neighbors, NB: Naive Bayes. 
b: I: Training set 1, II: Training set 2, a: External test set 1, b: External test set 2, A: model 1, B: model 2, pri. bio: primary biodegradation, ult. bio: ultimate 

biodegradation.
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3. Materials and methods 
 

3.1. Data 

Experimental data on ready biodegradation were collected from the webpage of the 

National Institute of Technology and Evaluation (NITE) of Japan.
22

 The data followed the 

OECD test guideline (301 C) which measures the Biochemical Oxygen Demand (BOD) in 

aerobic aqueous medium for 28 days
23,24

 BOD is calculated as shown in Eq. 1 and 2 where 

ThOD is the theoretical oxygen demand which is the total amount of oxygen required to 

oxidize a chemical completely; it is calculated from the molecular formula. 

 

in vessel substance test mg

blankby  uptake O mg - substanceby test  uptake O mg 22
BOD

  

(1)

 

 

100 x 
substance) test oxygen/mg O (mg 

substance) test oxygen/mg O (mg 

2

2

ThOD

BOD
% BOD     (2) 

 

Chemicals with a BOD value higher than 60% are considered as ready biodegradable and 

molecules with a BOD less than 60% are regarded as not ready biodegradable. 

The experimental BOD values and classification judgments were collected for 1309 

molecules. The replicated BOD values were given for 223 molecules. The test period was 

28 days for 882 molecules and for the rest of the molecules the test period was between 14 

and 25 days. A screening procedure was performed to make sure that the experimental data 

was in compliance with the OECD test protocol for ready biodegradation. The screening 

procedure removed 247 molecules (section 4.1. describes the procedure). In the end, 1062 

molecules remained to be used in modeling. 

 

3.2. Molecular descriptors and fingerprints 

The molecular descriptors shown in Table 2 were calculated from the software Dragon.
25

 

Descriptors with missing values, constant and near-constant values were not used in 

modeling. 

Fingerprints were produced from SubMAT and PaDEL.
26,27

  From PaDEL the following 

eight fingerprints were calculated, namely CDK fingerprint (FP), CDK extended fingerprint 

(ExtFP), Estate fingerprint (EstateFP), CDK graph only fingerprint (GraphFP), MACCS 

keys (MACCS), PubChem fingerprint (PubChemFP), Substructure fingerprint (SubFP) and 

Klekota-Roth fingerprint (KRFP). Fingerprints with a defined set of molecular features are 

named structural keys. It is also possible to make fingerprints from a set of rules, e.g. all 

paths with a length of up to 8 atoms. This can generate a high number of paths and a 

hashing function can therefore be used to fix the size of the fingerprint. Hashed fingerprints 
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are the name of these fingerprints and the three fingerprints from CDK are hashed 

fingerprints (see Table 3). 

 

Table 2: Molecular descriptors
25 

Group of descriptors Number Description 

Constitutional indices 32 Chemical composition of a compound 
Ring descriptors 25 Information on rings 

Topological indices 34 Numbers from a graph representation of a molecule 

2D matrix-based descriptors 84 Topological indices applying algebraic operators to a graph-

theoretical matrix of a molecule 

Functional group counts 94 The number of selected functional groups  

Atom centered fragments 90 The number of selected atom types and groups 

Atom-type E-state indices 80 The number of atom-types encoding information on electron 

accessibility 

2D atom pairs 508 The number of defined pairs of non-hydrogen atoms with a 

defined connection 

 

Table 3: Vectorial descriptors/fingerprints 

Name Bits/Keys 

(Number) 

Description 

SubMAT 1365 Structural keys28 

CDK (FP) 1024 Path based, hashed fingerprint29 

CDK extended (ExtFP) 1024 Extends the FP with additional bits describing ring features27 

CDK graph only (GraphFP) 1024 Specialized version of the FP which does not take bond orders 

into account27 

Estate (EstateFP) 79 Structural keys containing E-state fragments30 

MACCS (MACCS) 166 Structural keys31 

PubChem (PubChemFP) 881 Structural keys 

Substructure (SubFP) 307 Structural keys27 

Klekota-Roth (KRFP) 4860 Structural keys32 

 

3.3. Modeling method 

k-NN was used as the modeling method to find the relationship between the experimental 

values and the chemical structures and properties. Different distance/similarity measures 

were used to find the nearest neighbors. The global molecular descriptors we used were the 

Cityblock metric, the Euclidian distance and the Minkowski metric. For the vectorial binary 

descriptors, the similarity indices used were the Jaccard-Tanimoto and the Consonni-

Todeschini CT4 index.
33 

Principal component analysis (PCA) and Multidimensional scaling (MDS) were performed 

on molecular descriptors and fingerprints, respectively, in order to see how the molecular 

descriptors and fingerprints spread out the data and to study the degree of separation 

between ready and not ready biodegradable molecules. 

Two variable selection methods were investigated. The first method used the univariate 

Wilk’s Lamdba to find the molecular descriptors which were the most important descriptors 
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in respect to ready and not ready biodegradable molecules.
34

 The Wilk’s Lambda value was 

calculated for each descriptor and the 50 descriptors with the lowest Wilk’s Lambda values 

were used in modeling. In the second variable selection method, Wilk’s lambda was 

calculated for all the molecular descriptors and the 200 descriptors with the lowest Wilk’s 

lambda values were applied a Genetic Algorithm.
35

     

 

3.4. Model validation 

The 1062 molecules were randomly split into 20 % test and 80% training set. The balance 

between ready and not ready biodegradable molecules was retained in the test and training 

set (see Table 4). 

 

Table 4: Number of molecules in the training and test set. 

 Ready biodegradable Not ready biodegradable Total 

Total data 356 706 1062 

Training set 285 565 850 

Test set 71 141 212 

 

Cross-validation was performed by dividing the training set into ten groups and iteratively 

predicting one group from a model built on the remaining nine groups. The model statistics 

was estimated by the use of sensitivity (ability to correctly predict positives/ready 

biodegradable), specificity (ability to correctly predict negatives/not ready biodegradable) 

and non-error rate. The estimates were defined as the sensitivity = (TP/(TP+FN)) and 

specificity = (TN/(TN+FP)) where TP, FN, TN and FP were true positives, false negatives, 

true negatives and false positives, respectively. The non-error rate was calculated as the 

average of sensitivity and specificity. 

 

4. Results and discussion 
 

4.1. Data screening 

It was important that the QSAR model was built on accurate chemical structures and that 

the experimental data followed the OECD test guideline (301 C). The screening procedure 

was done in the following way: 
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1) Molecular structure 

Simplified molecular-input line-entry system (SMILES) describes the molecular 

structure of a substance and these were gathered for all the molecules. The OECD 

QSARtoolbox
36

 was used to collect the SMILES strings from the CAS number of 

each molecule. Only SMILES from high or medium quality information were 

collected. SMILES can be written in different ways and they were therefore 

canonicalized. The data set was then searched for duplicates but no duplicates were 

found.    

Sometimes two CAS numbers were given to one experimental result, namely 

“CAS” and “Biodegradation: CAS Registry No.” and in those cases 

“Biodegradation: CAS Registry No” was used. For some experimental results 

several names were specified and in those situations "Chemical Name in the 

Official Bulletin" was used unless "Biodegradation: Name of chemical tested" was 

present. For 81 molecules no defined SMILES string could be found and those 

molecules were removed. 

2) Molecules with more than 20% difference between BOD replicates 

Most molecules with replicated BOD values had three values. If one of the three 

values was deviating from the two other BOD values then the deviating value was 

removed if it was an outlier according to Dixon’s Q test with a 90% confidence 

limit.
37

 After the removal of outliers, if a molecule still had a difference between 

replicates of more than 20% and the replicate values classified the molecule into 

different categories then the molecule was removed. This was the case for 24 

molecules which were removed. For the remaining molecules with replicate values 

the average BOD was used.
 

3) Transforming <28 days test results into 28 days 

The test period was not the same in all the experimental results since the original 

OECD protocol used a 14 days test period (Figure 1).
15

 The results with <28 days 

test period was transformed into 28 days test results as was done in Sedykh & 

Klopman (2007).
20

 This means that the BOD % was multiplied with 1+((28-x)/28) 

where x was the number of days of the test. This extrapolation could over or under 

estimate the BOD values. However, experimental data was only used if the BOD 

value and the judgment by NITE (step 5) classified in the same way. It was 

therefore assumed that classification errors due the extrapolation could be 

neglected. 
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Figure 1: Distribution of BOD values for test periods of 28 days and <28 days. (A) Molecules 

judged by NITE as ready biodegradable. (B) Molecules judged by NITE as not ready 

biodegradable. 

     

4) Molecules where the classification changed if nitrification was taken into account 

If a molecule contains nitrogen then there is a possibility for nitrification in the 

ready biodegradation test.
23

 Nitrification involves the consumption of oxygen and it 

is therefore necessary to exclude this consumption from the BOD value since the 

BOD should only measure the oxygen used by microorganisms.  From the collected 

data it was not possible to know the extent of nitrification. Molecules which differed 

in their classification depending on the assumption of complete or no nitrification 

was therefore removed and this was the case for 4 molecules. 

5) Molecules where the experimental value did not agree with the classification on 

NITE 

Some molecules had BOD values which classified them in one way and a judgment 

by NITE which classified them in another way. The classification was done 

according to the BOD %. This meant that BOD > 60% was classified as ready 

biodegradable and BOD < 60% was classified as not ready biodegradable. The 

molecules which were classified and judged differently were removed and this was 

the case for 54 molecules. 

6) Disconnected structures 

Some compounds contained disconnected structures, e.g. salts, mixtures, isomer 

mixtures as for instance Cresol and polymers as for example paraformaldehyde. 

Salts were removed because the ion concentration has an influence on the solubility 

of a molecule and the solubility is correlated with biodegradation. Mixtures, isomer 

mixtures and polymers were removed because they contained several structures. In 

total 84 disconnected molecules were removed. 
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Table 5: The reasons for removing molecules from the data set. 

Reason for removal of molecules from the data set Removed molecules 

(number) 

No defined SMILES string 81 

Replicate values had more than 20% difference and classified differently 24 

The classification would change if nitrification was taken into account 4 

The experimental value did not agree with the classification on NITE 54 

Disconnected structures 84 

 

Table 5 summarizes the removal of molecules during the data screening.  1062 molecules 

remained after the data screening with 356 ready biodegradable and 706 not ready 

biodegradable molecules. 

 

4.2. Modeling 

 

It was investigated how the fingerprints and molecular descriptors spread out the ready and 

not ready biodegradable molecules. As seen from Figure 2, the ready biodegradable 

molecules had a tendency to form a group inside the group of the not ready biodegradable 

molecules. This means that it might be difficult to separate the two classes in a linear model 

since they contain some of the same chemical information. A non-linear model like k-NN 

could therefore improve the classification. 

 

 
Figure 2: The training set of 850 ready and not ready biodegradable molecules shown as an MDS plot 

where the distance measure Jaccard-Tanimoto and the MACCS fingerprint was used. (Green) not 

ready biodegradable, (blue) ready biodegradable. 
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k-NN models were developed using different fingerprints and groups of molecular 

descriptors. From the fingerprints, SubMAT and MACCS produced the highest non-error 

rate of 84% in cross-validation (Table 6). The highest non-error rate for the groups of 

molecular descriptors from DRAGON was found to be 83% using functional group counts 

or atom-type E-state indices (Table 7).  

 

Table 6: Statistical results for k-NN models with the use of different vectorial descriptors/fingerprints  

   Cross-validation
d 

Test set validation
d
 

Fingerprint.
a
 k

b 
Dis./sim.

c 
NER 

(%) 

Spe. 

(%) 

Sen. 

(%) 

NER 

(%) 

Spe. 

(%) 

Sen. 

(%) 

SubMAT 5 JT 84 89 79 76 83 69 

FP 3 CT 80 84 76 73 82 65 

ExtFP 3 CT 79 85 74 75 83 66 

GraphFP 10 JT 76 79 74 70 78 62 

EstateFP 6 JT 80 78 83 76 74 77 

MACCS 8 JT 84 91 78 83 89 77 

PubChemFP 6 JT 80 83 76 75 83 68 

SubFP 3 CT 80 79 82 76 79 73 

KRFP 8 CT 82 86 78 80 85 75 
a: KRFP: Klekota-Roth fingerprint, SubFP: Substructure fingerprint, EstateFP: E-state fingerprint, 

PubChemFP: PubChem fingerprint, FP: CDK fingerprint, ExtFP: CDK extended fingerprint, GraphFP: CDK 

graph only fingerprint. 
b: k: the number of k-nearest neighbors. 
c: Dis./sim.: Distance or similarity measurement method, JT: Jaccard Tanimoto, CT: Consonni-Todeschini. 
d: NER: Non-error rate, Sen.: Sensitivity (correctly predicted ready biodegradable), Spe.: Specificity 

(correctly predicted not ready biodegradable).  

 

Wilk’s Lambda was used to select 50 variables among the DRAGON descriptors from 

Functional group counts, Atom centered fragments, Atom-type E-state indices and 2D atom 

pairs. This approach did not improve the non-error rate compared to the cross-validation 

results from the different groups of descriptors (Table 7). 

Wilk’s lambda was used together with a genetic algorithm as a different method to select 

the most important molecular descriptors. This method was performed on the same data set 

but the SMILES strings were collected in a slightly different way. The SMILES strings 

were gathered by a colleague (Kamel Mansouri) from two other databases, namely 

Chemspider and Cactus.
39,40

 The SMILES strings used in the beginning of the result section 

are almost the same as the ones collected by Kamel Mansouri since only 36 SMILES were 

differing. From the 36 SMILES strings, 13 molecules were different because they were 

represented as a salt and a non-salt, 8 molecules were tautomers and one molecule was 

represented as neutral and charged. 

The Wilk’s Lambda used together with the genetic algorithm resulted in k-NN models with 

higher non-error rates (85% and 83% in cross-validation) compared to the other k-NN 

models made from single blocks of DRAGON descriptors (Table 7). 



11 

 

Table 7: Statistical results for eight k-NN models, one PLS-DA model and one SVM model with the use 

of different DRAGON molecular descriptors 

   Cross-validation
d 

Test set validation
d
 

Descriptors
a
 k

b 
Dis./sim.

c
 NER 

(%) 

Spe. 

(%) 

Sen. 

(%) 

NER 

(%) 

Spe. 

(%) 

Sen. 

(%) 

Func. group 4 City 83 86 79 78 82 75 

Atom cen. 6 Euclid 82 81 83 78 82 75 

Estate 5 City 83 79 87 78 79 76 

Atom pairs 6 City 80 85 75 77 82 72 

50 Wilk’s L. 3 Euclid 80 86 73 81 89 73 

19 GA 5 Euclid 85 88 82 84 90 78 

8 GA 7 Euclid 83 91 76 83 92 74 
a: Func. group: Functional group counts, Atom cen.: Atom centered fragments, Estate: Atom-type E-state 

indices, Atom pairs: 2D atom pairs, 50 Wilk’s L.: 50 DRAGON descriptors chosen by Wilk’s Lambda, 19 

GA: 19 DRAGON descriptors selected by Wilk’s Lambda and a genetic algorithm. 8 GA: 8 DRAGON 

descriptors selected by Wilk’s Lambda and a genetic algorithm. 
b: k: the number of k-nearest neighbors. 
c: Dis./sim.: Distance or similarity measurement method, City: Cityblock metric, Euclid: Euclidian distance. 
d: NER: Non-error rate, Sen.: Sensitivity (correctly predicted ready biodegradable), Spe.: Specificity 

(correctly predicted not ready biodegradable).  

 

From all the model statistics it was seen that there was a tendency for higher specificity 

compared to sensitivity. This was expected since other models on ready biodegradation 

have had the same trend.
14,15,21

  

 

4.3 Model interpretation 

 

Within the ECO project, additional QSAR models were developed by another ECO fellow 

(Kamel Mansouri) on the basis of the data gathered in this project. To be more specific, 

three different models based on k-NN, Partial Least Squares Discriminant Analysis (PLS-

DA) and Support Vector Machines (SVM) were calculated and retained as acceptable ones. 

Afterwards, an analysis on the selected molecular descriptors in each of these models was 

carried out in order to see if the information in the models were in accordance with current 

knowledge on biodegradation.  

The k-NN model had a high non-error rate of 86% in the cross-validation (results not 

shown). The 12 molecular descriptors selected for the k-NN model can be seen in Table 8. 

The descriptors were used in a PCA model to study how they would spread out the data. 
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Table 8: 12 molecular descriptors selected for a k-NN model built on ready and not ready 

biodegradation. 

Symbol Description
a 

SpMax_L Leading eigenvalue from Laplace matrix 

J_Dz(e) Balaban-like index from Barysz matrix weighted by Sanderson electronegativity 

nHM Number of heavy atoms 

F01[N-N] Frequency of N-N at topological distance 1 

F04[C-N] Frequency of C-N at topological distance 4 

NssssC Number of atoms of type ssssC 

nCb- Number of substituted benzene C(sp2) 

C% Percentage of C atoms 

nCp Number of terminal primary C(sp3) 

nO Number of oxygen atoms 

F03[C-N] Frequency of C-N at topological distance 3 
SdssC Sum of dssC E-states 
a: ssssC: Carbon with four single bonds, dssC: Carbon with one double bond and two single bonds. 

 

From Figure 3A it was seen that most of the ready biodegradable molecules had negative 

values on PC1. The descriptors which were responsible for higher values on PC1 contained 

information on substituted benzene and nitrogen which fits with the knowledge that non-

biodegradable molecules contain more cyclic groups and nitro groups (see Figure 3B and 

the descriptors nCb-, F01[N-N], F04[C-N], and F03[C-N]). PC1 also showed information 

on branching by having high values for quaternary carbon and carbon bound to three 

terminal atoms and low values for carbon with two single bonds and one double bond 

(Figure 3B and the descriptors NssssC, nCp and SdssC). It is known from the literature on 

biodegradation that branching decreases biodegradation and PC1 is in accordance with this. 

On PC3 there seemed to be a tendency for ready biodegradable molecules to have a smaller 

variation around the center compared to not ready biodegradable molecules. The descriptor 

which had the highest value on PC3 was the percentage of carbon and the descriptors which 

had the lowest values contained information on oxygen and nitrogen (descriptors C%, nO, 

F01[N-N], F04[C-N], and F03[C-N]). The descriptors with the highest influence on PC3 

therefore seemed to describe the percentage of carbon vs. the percentage of oxygen and 

nitrogen. This might be the reason why a clear separation between the classes was not seen 

since the percentage of carbon vs. the percentage of oxygen and nitrogen is not directly 

correlated with biodegradation. PC3 also had a high value for heavy atoms which could be 

the reason why not so many biodegradable molecules had high values (descriptor nHM).  
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Figure 3: PCA model on ready and not ready biodegradable molecules built on 12 descriptors. The 

description of the descriptors can be seen in Table 8. (A) PC1 and PC3 showing the score values of 

ready and not ready biodegradable molecules. (B) PC1 and PC3 with the 12 molecular descriptors. 
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The statistical performance of the PLS-DA model was a high non-error rate of 86% in the 

cross-validation (results not shown). In the PLS-DA model the 23 molecular descriptors in 

Table 9 were used.  

 

Table 9: 23 molecular descriptors selected for a PLS-DA model built on ready and not ready 

biodegradation. 

Symbol Description
a
 

SpMax_L Leading eigenvalue from Laplace matrix 

HyWi_B(m) Hyper-Wiener-like index (log function) from Burden matrix weighted by mass 

LOC Lopping centric index 

nO Number of Oxygen atoms 

SM6_L Spectral moment of order 6 from Laplace matrix 
F03[C-O] Frequency of C - O at topological distance 3 

Me Mean atomic Sanderson electronegativity (scaled on Carbon atom) 

Mi Mean first ionization potential (scaled on Carbon atom) 

nN-N Number of N hydrazines 

nArNO2 Number of nitro groups (aromatic) 

nCRX3 Number of CRX3 

SpPosA_B(p) Normalized spectral positive sum from Burden matrix weighted by polarizability 

nCIR Number of circuits 

B01[C-Br] Presence/absence of C - Br at topological distance 1 

B03[C-Cl] Presence/absence of C - Cl at topological distance 3 

F04[C-N] Frequency of C - N at topological distance 4 

N-073 Ar2NH / Ar3N / Ar2N-Al / R..N..R 
SpMax_A Leading eigenvalue from adjacency matrix (Lovasz-Pelikan index) 

Psi_i_1d Intrinsic state pseudoconnectivity index - type 1d 

B04[C-Br] Presence/absence of C - Br at topological distance 4 

C% percentage of C atoms 

SdO Sum of dO E-states 

TI2_L Second Mohar index from Laplace matrix 
a: CRX3: Carbon bound to three halogens, Al: Aliphatic, Ar: Aromatic, ..: Represents aromatic single bonds, 

R: Represents any group linked through carbon, dO: double bond to oxygen. 

 

Latent variable (LV) 1 in the PLS-DA model had a tendency for lower values for not ready 

biodegradable molecules compared to ready biodegradable molecules (see Figure 4A). 

Descriptors with high values on LV1 had information on cycles, halogens and nitrogens 

which is in alignment with the knowledge on biodegradation since non-biodegradable 

molecules in general contain these entities (see Figure 4B and the descriptors nCIR, B03[C-

Cl],  F04[C-N], B04[C-Br], B01[C-Br], N-073, nCRX3). LV2 had high values for oxygen 

containing compounds and low values for nitrogen and halogen containing compounds. 

This fits with the literature on biodegradation since biodegradable compounds contain more 

esters, amides, hydroxyl groups, aldehyde groups and carboxylic acid groups compared to 

non-biodegradable molecules which on the other hand tend to have more nitrogen and 

halogens. 
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Figure 4: PLS-DA model on ready and not ready biodegradable molecules built on 23 descriptors. The 

description of the descriptors can be seen in Table 9. (A) LV1 and LV2 showing the score values of 

ready and not ready biodegradable molecules. (B) LV1 and LV2 with the 23 molecular descriptors. 
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A SVM model which used 14 descriptors (Table 10) was developed and it had a non-error 

rate of 86% in the cross-validation (results not shown). The same descriptors were used in a 

PCA model and the score plot can be seen in Figure 5A. On PC1 not ready biodegradable 

molecules had higher values compared to ready biodegradable molecules. The descriptors 

which resulted in higher values on PC1 had information on aromatic groups with 

electronegative atoms, halogens, nitrogens and quaternary carbon (see Figure 5B and the 

descriptors C-026, nCb-, nX, NssssC, F02[C-N] and nN). This is in accordance with the 

literature since non-biodegradable molecules in general have more nitrogen groups and 

aromatic groups with halogens compared to biodegradable molecules. The descriptors 

which resulted in high values on PC2 had information on nitrogen and the descriptors that 

caused lower values had information on halogens, quaternary carbon and rings. Since all 

these features in general are associated with non-biodegradable molecules it was not 

surprising that ready biodegradable molecules had more centered values on PC2 compared 

to not ready biodegradable molecules. 

 

Table 10: 14 molecular descriptors selected for a SVM model built on ready and not ready 

biodegradation. 

Symbol Description
a
 

NssssC Number of atoms of type ssssC 

nCb- Number of substituted benzene C(sp2) 

nCrt Number of ring tertiary C(sp3) 

SpMax_L Leading eigenvalue from Laplace matrix 

C-026 R--CX--R 

F02[C-N] Frequency of C - N at topological distance 2 

nN-N Number of N hydrazines 

nHDon Number of donor atoms for H-bonds (N and O) 
SpMax_B(m) Leading eigenvalue from Burden matrix weighted by mass 

Psi_i_A Intrinsic state pseudoconnectivity index - type S average 

nN Number of Nitrogen atoms 

SM6_B(m) Spectral moment of order 6 from Burden matrix weighted by mass 

nArCOOR Number of esters (aromatic) 

nX Number of halogen atoms 
a: ssssC: Carbon with four single bonds, R--CX--R: An aromatic carbon bound to an electronegative atom (O, 

N, S, P, Se, halogens).  

 

It was not possible to explain all descriptors in relation to biodegradation. Some descriptors 

were not easily interpretable (e.g. SpMax_L which is related to molecular branching) and 

other descriptors did not describe a specific functional group (e.g. percentage of carbon). 

However, all three models in Figure 3, 4 and 5 contained some interpretable molecular 

descriptors which on some PC’s or LV’s followed the current knowledge on 

biodegradation.  
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Figure 5: PCA model on ready and not ready biodegradable molecules built on 14 descriptors. The 

description of the descriptors can be seen in Table 10. (A) PC1 and PC2 showing the score values of 

ready and not ready biodegradable molecules. (B) PC1 and PC2 with the 14 molecular descriptors. 
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5. Conclusion 
 

A data set of 1309 ready and not ready biodegradable molecules was collected. The data set 

was screened in order to obtain correct chemical representations and experimental results 

which were in accordance with the OECD test guideline (301 C). k-NN models were built 

with different fingerprints and molecular descriptors. The fingerprints SubMAT and 

MACCS resulted in the highest cross-validation non-error rate of 84% and the molecular 

descriptors which gave the highest cross-validation result of 83% was functional group 

counts and atom-type E-state indices. A variable selection technique which used Wilk’s 

Lambda followed by a genetic algorithm resulted in a higher non-error rate in cross-

validation of 85%. In the end, it was possible to interpret some of the information used in a 

k-NN, PLS-DA and SVM model built on ready biodegradation. 
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6. Schools, conferences and training 
 

Web conference: "Ethoxylates, MS and QSAR", University of Milano-Bicocca, 12th 

October 2011 

Presenter: Ian Ken Dimzon 

 

Internal training action: “Chemoinformatic tools for eco-toxicology”, University of 

Milano-Bicocca, 20, 21, 25, 27th October 2011   

Presenter: Alberto Manganaro 

 

Web conference: "Molecular dynamics directed CoMFA studies on carbocyclic 

neuraminidase inhibitors", University of Milano-Bicocca, 2th November 2011 

Presenter: Swapnil Chavan 

 

Web conference: "Prediction of environmental pollutants binding affinities to AhR using 

MFTA approach", University of Milano-Bicocca, 7th December 2011 

Presenter: Alexander Safanyaev 

 

Workshop: "Workshop on High Performance Computing for Proteomics (HPC4P)", 

organized by CINECA, Bologna, 12th December 2011 

 

Web conference: “Technical aspects of cell-based in vitro assays”, University of Milano-

Bicocca, 18th January 2012 

Presenter: Tobias Lammel 

 

External training: “Scuola di chemiometria”, Department of Chemistry, Pharmaceutical 

and Nutrition Technologies, University of Genova, 23-26th January 2012 

 

Web conference: “Computational nanotoxicology”, University of Milano-Bicocca, 15th 

February 2012 

Presenter: Rajesh Rathore 

 

External training: “2nd Winter School of the Marie Curie Initial Training Network, 

Chemoinformatics”, Instituto Nacional de Investigacion y Tecnologia Agraria y 

Alimentaria, Madrid, 27th February – 2nd March 2012 

 

Web conference: “ Species-specific cytotoxicity of nano copper”, University of Milano-

Bicocca, 28th March 2012 

Presenter: Lan Song 
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Web conference: “Pulsed exposure to multiple toxicant: Testing the sequence effect”, 

University of Milano-Bicocca, 8
th
 May 2012 

Presenter: Isabel O'Connor 

 

External training: “Use of QSAR in risk assessment: practical use of the VEGA models”, 

SETAC Europe, Berlin, Germany, 20
th
 May 2012 

 

External conference: “SETAC Europe 22
nd

 Annual meeting/6
th

 World meeting”, SETAC 

Europe, Berlin, Germany, 21-24
th
 May 2012 

 

External conference: “2
nd

 summer School 2012of the Marie Curie ITN Environmental 

Chemoinformatics”, Milano Chemometrics and QSAR Research Group, Verona, Italy, 11-

15
th

 June 2012 

 

External conference: “15
th

 International workshop on Quantitative Structure-Activity 

Relationships in Environmental and Health Sciences”, Tallinn, Estonia, 18-22th June 2012  

 

External training: “3
rd

 Strasbourg Summer School on Chemoinformatics”, University of 

Strasbourg, Strasbourg, France, 25-29
th
 June 2012 

 

External conference: “Marie Curie Actions Conference 2012”, The European 

Commission, Dublin, Ireland, 10-11
th
 July 2012 

 

Web conference: “Probabilistic risk assessment for the estimation of environmental risk”, 

University of Milano-Bicocca, 25
th
 July 2012 

Presenter: Pantelis Sopasakis. 

 

7. Publications 
 

Poster at the 2nd Winter School of the Marie Curie Initial Training Network, 

Chemoinformatics, 2012, Madrid, Spain. 

Ringsted, T., Giagloglou, E., Ballabio, D., Mauri, A., Cassotti, M., Consonni, V., 

Todeschini, R., Read-across methodology in aquatic ecotoxicology and ready 

biodegradation. 
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Poster at the 15
th

 International workshop on Quantitative Structure-Activity 

Relationships in Environmental and Health Sciences, 2012, Tallinn, Estonia. 

Ringsted, T., Mansouri, K., Ballabio, D., Mauri, A., Consonni, V., Todeschini, R., A 

(Q)SAR study on ready biodegradability. 

 

Peer reviewed article in preparation for publishing in Journal of Chemical 

information and modeling. 

Ringsted, T., Mansouri, K., Ballabio, D., Mauri, A., Consonni, V., Todeschini, R., A 

(Q)SAR study on ready biodegradability. 
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