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Introduction 

Three classes of aryl hydrocarbon receptor ligands were under 

investigation. Namely, it was polysubstituted dibenzo-p-dioxins (PSDDs), 

polysubstituted dibenzofuranes (PSDFs) and polybrominated dipenyl ethers 

(PBDEs), which are well-known as hazardous environmental contaminants. 

Different QSAR approaches ― molecular field topology analysis 

(MFTA)[1], and seven machine learning methods implemented into 

OCHEM platform were used[2]. Separate models for each class of 

compounds and hybrid models have been created. Statistical parameters 

and graphical visualisation of derived results indicated their fine quality, 

absence (or minimal occurence) of chance correlations and high predictive 

power. MFTA topological maps allowed to get some inside into ligand-

AhR interactions. Using OCHEM tools, the applicability domain (AD) of 

constructed models was stated. It gave the possibility to detect outliers, 

improve the quality of models and to distinguish reliable and unreliable 

predictions. It also allowed to make suggestions about inaccurate 

experimental measurements of AhR binding affinities for a few compounds 

and to propose structural explanations for some compounds with unreliable 

predictions. Comparison of created models with another QSAR studies on 

AhR ligands showed that proposed models were in a good qualitative 

accordance with the previous results and were comparable or even better in 

a statistical sense. 

 

Experimental Data 

AhR binding affinities for PSDDs, PSDFs and PBDEs were reported 

previously[3][4][5][6][7][8]. In all calculations we used EC50 values 

converted into logarithm of inverse concentration (pEC50 = log(1/EC50)). 

This data is collected in Table 1. 
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Results and discussion 

We have constructed seven types of models using OCHEM tools and 

MFTA approach: three separate models for each class of AhR ligands, then 

three hybrid models (including compounds from two classes in each 

model), and finally, one model which contained compounds from all 

classes. This information is summarized in Tables 2-6. It should be noted 

that the 4th, 6th and 7th types of models were built only by OCHEM tools. 

The reason is that in current version of MFTAWin it is not possible to 

unify both dibenzo-p-dioxin and dibenzofuran (and even dibenzofuran and 

biphenyl ethers) scaffolds in one MSG. We will analyze all results one after 

another, and then compare different groups of models and used approaches.   

Table 2. Separate and hybrid models 

type of model n classes included in model N 

separate 
I PSDDs 49 
II PSDFs 53 
III PBDEs 18 

hybrid 

IV PSDDs + PSDFs 102
V PSDDs + PBDEs 67 
VI PSDFs + PBDEs 71 
VII PSDDs + PSDFs + PBDEs 120

N is the number of compounds in training set; n is the number of dataset 
 
Table 3. Statistics for MFTA models 

n descriptors 
Statistical parameters of model
NF RY Q2 AvgErr 

I 

Q 6 0.87 0.19 0.474 
Re 2 0.74 0.40 0.649 
Lg 1 0.69 0.29 

Q,Re 6 0.92 0.53 0.391 
Q,Re,Lg 6 0.95 0.70 0.293 

Q,Re,Lg,Ha,Hd 6 0.96 0.72 0.273 

II 

Q 4 0.93 0.75 0.363 
Re 4 0.91 0.72 0.379 
Lg 4 0.92 0.74 

Q,Re 4 0.92 0.74 0.359 
Q,Re,Lg 4 0.93 0.77 0.335 
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Q,Re,Lg,Ha,Hd 4 0.94 0.79 0.311 
Q 3 0.87 0.32 0.320 

III Pa 2 0.87 0.36 0.321 
Re 2 0.86 0.31 0.321 
Lg 1 0.73 0.20 

Q,Pa 3 0.88 0.30 0.318 
Pa,Re 2 0.86 0.33 0.321 

III* 

Q 3 0.88 0.50 0.307 
Pa 2 0.86 0.60 0.342 
Re 3 0.89 0.47 0.308 
Lg 1 0.74 0.38 

Q,Pa 2 0.85 0.39 0.329 
Pa,Re 3 0.89 0.51 0.304 

V 

Q 
general 5 0.88 0.38 0.469 
PSDDs 6 0.93 0.32 0.380 
PBDEs 1 0.74 0.37 0.395 

Q,Pa 
general 5 0.87 0.37 0.492 
PSDDs 6 0.93 0.32 0.372 
PBDEs 1 0.76 0.38 0.390 

Q,Re 
general 6 0.92 0.63 0.381 
PSDDs 6 0.94 0.71 0.324 
PBDEs 1 0.67 0.30 0.443 

Q,Re,Pa 
general 6 0.92 0.63 0.382 
PSDDs 6 0.95 0.72 0.301 
PBDEs 1 0.66 0.28 0.446 

V* 

Q 
general 6 0.90 0.63 0.423 
PSDDs 6 0.93 0.65 0.362 
PBDEs 1 0.82 0.55 0.386 

Q,Pa 
general 6 0.91 0.58 0.397 
PSDDs 6 0.94 0.62 0.333 
PBDEs 1 0.80 0.54 0.383 

Q,Re 
general 4 0.91 0.68 0.386 
PSDDs 5 0.94 0.73 0.335 
PBDEs 1 0.81 0.49 0.334 

Q,Re,Pa 
general 6 0.93 0.69 0.373 
PSDDs 6 0.96 0.78 0.287 
PBDEs 1 0.80 0.48 0.351 

NF is the optimal number of factors in PLS-model, RY is the correlation 
coefficient for activity matrix (without cross-validation), Q2 is the cross-validation 
parameter, AvgErr is the average error; local descriptors: Q is the partial atomic charge 
calculated by electronegativity equalization approach proposed by Oliferenko et. al., Re 
is the van der Waals radius of first environment (atom + neighbours), Lg is the group 
lipophilicity (atom + hydrogens), Hd (Ha) is the ability of an atom in a given 
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environment to be a donor (acceptor) of a hydrogen bond characterized by the binding 
constants (Abraham approach), Pa and Pb are the site occupancy factors for atoms (Pa) 
and bonds (Pb) (which have the value 1 if a given feature is present in the structure and 
0 otherwise); when the number of dataset is marked with asterisk, it means that genetic 
algorithm for selection of descriptors was used  

For PSDDs (dataset I), the statistical parameters are presented in 

Tables 4 (for OCHEM models) and 3 (for MFTA models). Analysing 

values of Q2 and RMSE in OCHEM models one can see that the best 

results were derived using neural networks ANN, ASNN and FSMLR in 

conjunction with CDK and ADRIANA descriptors. High values of Q2 

indicate that we successfully eliminated the chance correlations. The plot 

with comparison of experimental and predicted pEC50 values for the best 

model (FSMLR, ADRIANA descriptors; R2 = 0.76, Q2 = 0.75, RMSE = 

0.614, MAE = 0.500) is shown in Figure 1 (a). It also confirms the fine 

correlation between selected descriptors and AhR binding affinities. To 

consider AD of this model one can use Figure 2 (a). In accordance with the 

plot, the least reliable predictions were obtained for the compounds with 

the values of DM more than 0.9. Among these dioxins there were 2,3-

dichloro-7-substituted- or 2-substituted -3,7,8-trichlorodioxins, where 7th 

and 2d substituents were another than halogens, e.g. ester, nitro, amide 

groups (compounds 35, 36, 39, 43, 48, 49). We proposed that relatively low 

reliability of predictions for mentioned dioxins might be connected with 

non-homogenicity of the training set: all of its compounds had atoms of 

halogens as substituents, and only the minority had another substituents in 

one position. We should also stress that, in spite of good predictions for 9 

compounds ( corresponding dots on the plot are inside the rectangle with 

DM > 0.9, absolute error (Y axis) < 0.7), it can be due to a chance. This 

observation indicates that we did not exclude all random correlations from 

the model. That is why one should carefully estimate results derived for 

similar compounds with the help of this model.         
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Using MFTA approach, we found a very important divergence in 

quality of models with different sets of descriptors. When only one 

electrostatic descriptor was included, we got unapplicable model with Q2 = 

0.19 (NF = 6). Addition of steric and hydrophobic descriptors dramatically 

improved this situation (especially including of Re) and lead to the highly 

predictive model with Q2 equal to 0.70. The models with only steric (Re) or 

hydrophobic (Lg) descriptors have much better quality and less number of 

PLS-components (for Re: Q
2 = 0.40, NF = 2; for Lg: Q

2 = 0.29, NF = 1), than 

that one with electrostatic descriptor. It indicates that the steric and 

hydrophobic interactions are of prime importance for dioxins binding. This 

conclusion is in a good accordance with previous studies[3][4][9] and the 

fact, that there were topological and geometrical descriptors filtered and 

presented in the best OCHEM models considered above. We can analyse 

the contributions of local descriptors using topological maps (Figure 3).  

                       
                                  Q                                                                            Re 

 
                                                                          Lg 
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                                        Hd                                                                       Ha 

Figure 3. Contributions of electrostatic (Q), steric (Re), hydrophobic (Lg) 
descriptors, and the abilities of an atom in a given environment to be a donor (Hd) or 
acceptor (Ha) of a hydrogen bond in PSDDs affinity to AhR in MFTA model (dataset I). 
Increasing the value of any descriptor in vertices with tints of red (and decreasing in 
those with tints of blue) leads to higher activity                                                                           

Steric contributions clearly demonstrate that addition of bulky 

substituents (considering only monoatomic substituents) in all lateral (2-, 3-

, 7- and 8-) positions is favourable for AhR affinity. Activity of PSDDs 

increases in the following series: 2,3-dichloro-dibenzo-p-dioxin < 2,3,7-

trichloro-dibenzo-p-dioxin < TCDD < 2-iodo-3,7,8-trichloro-dibenzo-p-

dioxin < TBDD more than 2.5 order of magnitude in logarithmic scale. The 

hydrophobic factor acts at the same way: increasing of lipophilicity in 

lateral positions also enlarges the binding affinity. Electrostatic 

contributions show that the increasing values of atomic charges on 

substituents in lateral positions and enrichment of aromatic dibenzo-p-

dioxin system with electron density are preferable for dioxins activity. One 

can note that in the case of halogens all these contributions act at the same 

direction: moving from fluorine to iodine, the atomic radius, lipophilicity 

and electropositivity enlarge. Also, polarizability of molecule and degree of 

enrichment of the dibenzo-p-dioxin ring system with electron density 

increase for heavy halogens. It can be explained using the obvious fact, that 

positive mesomeric effects for halogens prevail much more than negative 

inductive effects in this case. We may suggest that the distribution of 

electron density in the dioxins system play an important role in stacking 

interactions with the receptor. On the other hand, insertion of bulky 



  Project report – ITN‐ECO             "[yourname, name of project leader]"     8 

 

substituents in non-lateral positions decreases the activity. We also found 

the interesting fact: in one lateral position preferable functional groups 

(polyatomic)  should have descriptors’ distribution similar to 

trifluoromethyl group. It allows us to propose that the subtle balance 

between electrostatic, steric and hydrophobic factors takes place for 

substituents in lateral position: 2-trifluoromethyl-3,7,8-dibenzo-p-dioxin 

has a very high affinity (pEC50 = 8.495), but on the other hand, activities of 

2-methyl-3,7,8-dibenzo-p-dioxin (pEC50 = 6.886) and 2-hydroxy-3,7,8-

dibenzo-p-dioxin (pEC50 = 5.495) are much lower. It may be connected 

both with strong electrostatic interactions of trifluoromethyl group with 

positively charged residue of amino acid of AhR binding domain 

(alternatively, this group can serve as a hydrogen bond acceptor), and with 

proper van der Waals radius and  lipophilicity of this group. This 

suggestion is in accordance with the fact, that amino and hydroxyl groups 

(i.e., donors of hydrogen bond; these substituents have qualitatively 

opposite charge distribution than trifluoromethyl group) in lateral position 

dramatically decrease the affinity (compare pEC50 values for compounds 

40, 47 and 49). The distribution of Ha and Hd descriptors also confirms it.  

Among previous studies on PSDDs, we should mention CoMFA 

model proposed by Waller and McKinney[3]. Their 4-component model 

had a fine statistical parameters (Q2 = 0.72, R2 = 0.92, SE = 0.450). They 

included in the training set only 25 polyhalogenated dioxins (with chlorine 

and bromine atoms as a substituents); on the one hand, we can conclude 

that we extended the scope of applicability of this model; on the other 

hand, 5-fold cross validation, bagging procedure and Stable-CV procedure 

in our studies seem to give more reliable statistical results in comparison 

with the leave-one-out procedure used in this CoMFA modelling.     
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For PSDFs (datasets II, II*), statistics is presented in Tables 4 

(OCHEM modelling) and 3 (MFTA modelling). The best results were 

derived using ANN, ASNN and LibSVM methods in conjunction with 

Spectrophores. Firstly, compounds 79 and 92 were recognized as outliers. 

It looks good at Figures 1 (b) and 2 (b). Then we excluded these 

compounds and rebuilt 3 best models. It significantly improved statistical 

parameters; e.g., for ASNN model Q2 value enlarged from 0.69 to 0.81, 

RMSE value decreased from 0.623 to 0.477. Because there were not a great 

structural diversity between these two compounds and another compounds 

from the training set, and also they had a low values of DM (i.e., they were 

inside the AD), we proposed that unreliable predictions might be connected 

with uncorrect experimental values of EC50. Only two compounds (83, 102) 

had the values of DM more than 0.4, and binding affinities for another two 

compounds inside the AD (52, 85) were predicted with the absolute error 

more than 1 logarithmic unit. These facts, and the exellent statistical 

parameters (e.g., for ANN: R2 = 0.82, Q2 = 0.81, RMSE = 0.475, MAE = 

0.370) indicate that we built highly predictive models. 

In MFTA modelling, we also constructed fine models with high 

values of Q2 and four PLS-components. Models with one electrostatic, 

steric and hydrophobic descriptors had the Q2 values equal to 0.75, 0.72 and 

0.74, respectively. Futher creating of model with 5 descriptors slightly 

improved these values (Q2 = 0.79). It indicates that electrostatic, steric and 

hydrophobic factors are prevailing and give approximately the same 

contribution in the AhR-PSDFs interactions. Let us consider some details 

(Figure 4). 
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                                        Q                                                                       Re 

 
                                                                               Lg 

                                 
                           Hd                                                                             Ha 
Figure 4. Contributions of electrostatic (Q), steric (Re), hydrophobic (Lg) 

descriptors, and the abilities of an atom in a given environment to be a donor (Hd) or 

acceptor (Ha) of a hydrogen bond in PSDFs affinity to AhR in MFTA model (dataset 

II). Increasing the value of any descriptor in vertices with tints of red (and decreasing in 

those with tints of blue) leads to higher activity 

Contributions of steric descriptors demonstrate that bulky 

substituents in all lateral (2-, 3-, 7-, 8-) and two non-lateral (4-, 6-) 

positions are favourable for AhR affinity. It should be stressed that the 

increasing of bulk in the 3d and 7th positions gives the most important 

contribution into activity. Activity enhances in the following series: 

dibenzofuran < 2-chlorodibenzofuran < 3-chlorodibenzofuran < 2,3,7,8-

tetrachlorodibenzofuran (TCDF) more than 4.3 order of magnitude in 

logarithmic scale. In contrast, enlarging steric bulk in the other two non-

lateral positions (1, 9) leads to a lower binding affinity. These results are in 

a a good qualitative accordance with those reported previously by Safe et 
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al.[4] Authors used a simple plus/minus notations to represent the 

contributions of substituents in each position. Considering the hydrophobic 

factors, one can see that they act almost in the same way (like for dioxins): 

increasing of lipophilicity in all lateral and two non-lateral (4, 6) positions 

is preferable for activity, whereas in the other two non-lateral positions it 

leads to a lower affinity. Analyzing both abilities of atoms to be a hydrogen 

bond donor (acceptor) and electrostatic contributions, one can find the 

intriguing feature: at the 8th position, the trifluoromethyl (and 

bromomethyl) group leds to a relatively high affinity. 8-trifluoromethyl- 

and 8-(bromomethyl)-2,3,4-2,3,4-trichlorodibenzofurans are one of the 

most active congeners among the furan series (pEC50 = 7.060 and 6.577, 

respectively). So, like in analysis of dioxins’ affinity, we can propose that 

the very presize balance between steric and electrostatic factors may take 

place for this substituent. High AhR binding affinity can be caused not only 

by enhancement of van der Waals radius of this group, but also by 

Coulombic interactions of fluorines (bromine) with the positively charged 

amino asid residue (alternatively, by forming of a hydrogen bond, where 

halogen would be an acceptor; it is in accordance with contributions of Ha 

and Hd descriptors). 

We can compare created models with CoMFA study on PSDFs 

performed by Waller and McKinney[3]. They built 5-component model 

with good correlation (Q2 = 0.74, R2 = 0.86, SE = 0.539, 39 compounds). 

Again, we extended the training set (by including PSDFs not only with 

clorine atoms as a substituents), and, consequently, the AD of our model. 

We also used validation procedures mentioned above; it gives more reliable 

results that leave-one-out procedure applied in this CoMFA study. 

The statistical results for PBDEs (datasets III, III*) activity studies 

are summarized in Tables 4 (OCHEM modelling) and 3 (MFTA 
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modelling). It is obvious that the quality of these models is dramatically 

lower in comparison with the models constructed for PSDDs and PSDFs. 

The best one was obtained using LibSVM method in conjunction with 

GSFrag descriptors (R2 = 0.41, Q2 = 0.39, RMSE = 0.599, MAE = 0.473). 

Corresponding plot (Figure 1, c) also confirms the significant dispersion of 

predicted pEC50 values. Our failure may be explained by two factors. On 

the one hand, this training set (18 compounds) was the least representative 

one, and such a little amount of data would not be enough to reveal 

correlations between structure and activity of PBDEs. On the other hand, 

one can propose the low accuracy in the experimental measurements. These 

suggestions were corroborated after construction of hybrid models (see 

below). We should also stress another QSAR studies on PBDEs[7], where 

authors derived different models with Q2
LOO ranged from 0.29 to 0.91. The 

important remark is that leave-one-out (LOO) teqnique can lead to a great 

overestimation of Q2 value. Papa et. al. used MLRA in conjunction with 

DRAGON descriptors. They obtained a model with a good statistics (R2 = 

0.90, Q2
LOO = 0.79; Q2

EXT = 0.76, R2
EXT = 0.73) but the dataset was splited 

into a training (10 compounds) and test set (8 compounds). From our 

viewpoint, apart from applying LOO teqnique, it is not reasonable to split 

this small dataset of 18 compounds into training and validation sets. The 

data contained in 10 compounds is not enough to create highly predictive 

model. We decided to find another solutions of this problem: first, genetic 

selection of descriptors was applied in MFTA approach; also, hybrid 

models were constructed (see below). 

One can compare MFTA models for PBDEs with (Table 3, III*) and 

without (Table 3, III) application of genetic algorithm for selection of 

descriptors. The number of PLS-components is almost the same in both 

cases, but the values of Q2 are much better when genetic algorithm applied. 
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It is interesting that the best result (Q2 = 0.60) was obtained using only one 

descriptor (occupancy factor, Pa). It was even better than all models created 

by OCHEM tools.                                  

           
                                                            Pa                                                       Re 

Figure 5. Contributions of steric descriptors (Re) and occupancy factors (Pa) in 
PSDFs affinity to AhR in MFTA model (dataset III*). Increasing the value of any 
descriptor in vertices with tints of red (and decreasing in those with tints of blue) leads 
to higher activity 

 

Because only bromine atoms were substituents in diphenyl ether 

system, it is useful to analyze the contributions of occupancy factors Pa and 

steric descriptors Re (Figure 5). Insertion of more than two bromine atoms 

in the ortho-position (or especially occurrence of two ortho-bromine atoms 

in one ring) decreases binding affinity. It may be connected with the 

different conformational behaviours of ortho-substituted diphenyl ethers. 

Additional bromine atoms lead to the distortion of planar structure. Activity 

increases in the following series: 2,2�,4,4�,5,6�-hexabrominated DE < 

2,3�,4,4�,6-pentabrominated DE < 3,3�,4,4�-tetrabrominated DE. On 

the other hand, all active compounds have two substituents in para-position 

of both rings.  

We performed hybrid modelling for PSDDs and PSDFs (datasets 

IV, IV*) to extend the sphere of applicability of previous models. The 

statistical results are presented in Table 5. Apart from general statistics, we 

also calculated it separately for each class to compare results with those for 

splited models. The best correlations were derived using neural networks 
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ANN and ASNN in combination with CDK and ADRIANA descriptors. 

Compounds 40 and 79 were recognized as outliers and excluded from the 

training set. After rebilding results became slightly better. AD (Figure 2, c) 

and visual plot (Figure 1, d) of the finest model (ASNN, ADRIANA 

descriptors; general: R2 = 0.75, Q2 = 0.75, RMSE = 0.601, MAE = 0.470; 

PSDDs: Q2 = 0.74, RMSE =0.627; PSDFs: Q2 = 0.72, RMSE =0.576) also 

illustrate its high quality and give bases for exclusion of mentioned 

compounds. It is interesting that 1,3,8-trichlorodibenzofuran 79 was also 

removed from the training set of separate model as outlier. 2-

trifluoromethyl-3,7,8-trichlorodibenzo-p-dioxin 40 lies very far from AD of 

constructed model (DM = 0.75); it may be due to the trifluoromethyl group, 

which is quite “exotic” substituent among another compounds of the 

training set. We should mention compounds with the values of DM more 

than 0.55 (5, 8, 27, 32, 62, 102); again, three of them have trifluoromethyl 

or phenyl group as a substituent, and high values of DM for these 

compounds can be explained by non-homogenicity of the training set (the 

same suggestion was considered above in discussion of the separate model 

for PSDDs). Compounds 4, 11, 84 and 92 have the most significant 

absolute errors (more than 1.3 logarithmic unit); these predictions should 

be considered as unreliable. In general, this hybrid model has a high 

predictive power and allows to predict binding affinities for both classes. 

The scope of applicability was extended without loss of statistical quality 

(in comparison with separate models). AD of our model was also 

significantly extended in comparison with the CoMFA model proposed by 

Waller and McKinney[9] (7 PLS-components, Q2 = 0.71, R2 = 0.879, SEP 

= 0.971, 64 compounds). Comparison of validation procedures in CoMFA 

and in our approaches is mentioned above.   
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The next type of hybrid models was created for PSDDs and PBDEs 

(datasets V, V*). The goal was not only to make dataset more 

representative, but also to obtain better correlations for PBDEs. The 

statistics is summarized in Tables 5 (OCHEM modelling) and 3 (MFTA 

modelling). We built two models in OCHEM using LibSVM and MLRA 

methods in conjunction with Chemaxon and ADRIANA descriptors, 

respectively. General statistics was fine with Q2 equal to 0.69 for both 

models. Statistical parameters for PSDDs also were good (Q2 = 0.64), but 

those for PBDEs improved insignificantly (Q2 = 0.37 and 0.42). Analysing 

AD of LibSVM model, we found that one compound ― 1,2,3,4,6,7,8,9-

octachlorodibenzo-p-dioxin 13 lies very far from the AD (DM = 2.27). 

Among another compounds with the values of DM > 1 (15, 38, 39, 48, 104, 

118), there were hydroxy-, amino- and acetamino- dioxin derivatives; it can 

be explained again by non-homogenicity of the training set. Also, 

trifluoromethyl-, nitro- and aminosubstituted dioxins were found among 

compounds with the highest absolute errors of prediction (14, 40, 43, 49, 

113; absolute error > 1.2).  

Using MFTA approach for hybrid modelling (without genetic 

selection of descriptors) gave good results only with two sets of descriptors 

Q, Re and Q, Re, Pa with general Q2 equal to 0.63. It is interesting that 

separate statistics for PSDDs was improved (Q2 = 0.71; compare with the 

same set of descriptors ― Q, Re in the model for only PSDDs with Q2 

equal to 0.53) while statistical parameters for diphenyl ethers were slightly 

lower that in separate model for PBDEs. Situation changed when we 

applied genetic algorithm for selection of descriptors. Statistics  for both 

PSDDs and PBDEs was fine with all used sets of descriptors. Number of 

PLS-components in each class were almost the same as in the separate 

modelling. It indicates that constructed models were stable and highly 
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predictive. Besides, the dataset became more representative, and these 

models could be applied for PSDDs and PBDEs. 

Hybrid modelling with PSDFs and PBDEs (datasets VI, VI*) is 

seemed to be the most successful one. The statistical parameters are 

presented in Table 6. The finest correlations were derived using ANN, 

ASNN and regression methods in conjunction with Chemaxon descriptors. 

The plot with comparison of experimental vs predicted pEC50 values 

(Figure 1, f) and AD (Figure 2, e) of one model (ANN, Chemaxon 

descriptors; general: R2 = 0.83, Q2 = 0.82, RMSE = 0.439, MAE = 0.351; 

for PSDFs: Q2 = 0.82, RMSE = 0.458; for PBDEs: Q2 = 0.66, RMSE 

=0.375) illustrate perfect results after removal of four outliers: two 

dibenzofurans (79, 92), and two diphenyl ethers (109, 113). These 

compounds had significantly higher absolute error than another 

representatives of the training set. After their exclusion statistical 

parameters became practically two-times better for PBDEs and much better 

for PSDFs. As far as these outliers were inside the AD, and because 

previous models also gave unreliable predictions for them, our suggestion 

about inaccurate experimental measurements is confirmed again. We 

should mention another compounds with unreliable predictions: 58, 71, 74, 

85 (DM > 0.4) and 77 (absolute error > 1); all of them were PSDFs 

(including two hydroxy derivatives). This model can be considered as the 

best one both for PSDFs and, especially, for PBDEs.             

Finally, we created one general model with PSDDs, PSDFs and 

PBDEs (dataset VII) using LibSVM approach in combination with 

Chemaxon descriptors. Statistics is summarized in Table 6. Figure 1, g 

illustrates the fine correlation between experimental and predicted pEC50 

values. Statistical parameters for PSDFs (Q2 = 0.53, RMSE = 0.766) and 

PBDEs (Q2 = 0.43, RMSE = 0.578) were slightly worse that those in 
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previous models, but still good. AD (Figure 2, f) allows to reveal 

unreliable predictions for dibenzofurans 58, 59, 85, 93, 99 (DM > 1) and 

compounds 11, 40, 79, 92, 95 (absolute error > 1.2). In spite of an 

unsignificant loss of quality for PSDFs and PBDEs, this general model can 

be used for predictions of a new compounds from all three classes; it is the 

most representative one.    
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Figure 1. Experimental vs predicted by OCHEM tools pEC50 values: a – dataset I 
(FSMLR, Adriana), b – dataset II* (ANN, Spectrofores), c – dataset III (LibSVM, 
GSFrag), d – dataset IV* (ASNN, Adriana), e – dataset V (LibSVM, 
ChemaxonDescriptors 7.4), f – dataset VI* (ANN, ChemaxonDescriptors 7.4), g – 
dataset VII (LibSVM, ChemaxonDescriptors 7.4). Excluded compounds are marked as 
blue points  



 

 
Table 4. Statistics for separate OCHEM models (datasets I, II, III) 

n of     
dataset 

Descriptors 
Machine learning method 

ANN ASNN KNN LibSVM FSMLR MLRA PLS 
Q2 RMSE Q2 RMSE Q2 RMSE Q2 RMSE Q2 RMSE Q2 RMSE Q2 RMSE

I 

CDK 0.70 0.680 0.73 0.646 0.63 0.754 0.55 0.832         0.64 0.746
Dragon6 (blocks: 1-29) 0.55 0.833 0.58 0.802 0.53 0.845

Fragmentor (Length 2-4) 0.58 0.807 0.59 0.792 0.54 0.842 0.58 0.804
GSFrag 0.67 0.715 0.70 0.682 0.52 0.859

Chemaxon Descriptors 
(7.4) 

0.59 0.797 0.62 0.759 0.51 0.870 0.51 0.865
      

Adriana 0.74 0.637 0.75 0.622 0.61 0.772 0.75 0.614 0.65 0.736
Spectrophores 0.53 0.850 0.53 0.846                     

II 

Fragmentor (Length 2-4) 0.51 0.782         0.58 0.723             
GSFrag 0.55 0.744 0.54 0.756

Chemaxon Descriptors 
(7.4) 

0.60 0.702 0.62 0.686
    

0.59 0.714
    

Inductive Descriptors 0.59 0.716 0.63 0.673
Adriana 0.66 0.645 0.68 0.630 0.60 0.705 0.57 0.727

Spectrophores 0.71 0.604 0.69 0.623 0.62 0.685 0.70 0.612 0.60 0.704 0.62 0.690 0.61 0.698
II* Spectrophores 0.81 0.475 0.81 0.477 0.78 0.513

III 

Chemaxon Descriptors 
(7.4) 

0.27 0.655                     

Adriana 0.31 0.641 0.28 0.653 
GSFrag             0.39 0.599

Inductive Descriptors 0.26 0.660
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Table 5. Statistics for hybrid OCHEM models (datasets IV, V) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n of     
dataset 

Descriptors Statistics 
Machine learning method 

ANN ASNN KNN LibSVM MLRA 
Q2 RMSE Q2 RMSE Q2 RMSE Q2 RMSE Q2 RMSE

IV 

CDK 

general  0.72 0.652 0.73 0.640 0.65 0.736 0.57 0.808 
PSDDs 0.70 0.684 0.70 0.675 0.59 0.794 0.65 0.732 
PSDFs 0.69 0.621 0.71 0.604 0.63 0.677 0.39 0.873
PSDDs 0.64 0.748 0.65 0.729 0.54 0.844 0.41 0.954
PSDFs 0.60 0.701 0.63 0.677 0.63 0.675 0.67 0.639

GSFrag 
general  0.67 0.713 0.67 0.713 0.59 0.795
PSDDs 0.72 0.656 0.72 0.656 0.48 0.894
PSDFs 0.53 0.762 0.53 0.762 0.62 0.689

Adriana 
general  0.71 0.662 0.73 0.638 0.63 0.748
PSDDs 0.68 0.705 0.70 0.680 0.65 0.729
PSDFs 0.69 0.619 0.71 0.596 0.53 0.765

IV* 

CDK 
general  0.72 0.645 0.74 0.617
PSDDs 0.69 0.687 0.71 0.662
PSDFs 0.69 0.604 0.73 0.571

Adriana 
general  0.74 0.616 0.75 0.601
PSDDs 0.73 0.641 0.74 0.627
PSDFs 0.70 0.593 0.72 0.576

V 

Chemaxon 
Descriptors 

(7.4) 

general  0.69 0.710
PSDDs 0.64 0.741
PBDEs 0.37 0.610

Adriana 
general  0.69 0.700
PSDDs 0.64 0.743
PBDEs 0.42 0.585
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Table 6. Statistics for hybrid OCHEM models (datasets VI, VII ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n of     
dataset 

Descriptors Statistics 
Machine learning method 

ANN ASNN LibSVM FSMLR MLRA PLS 
Q2 RMSE Q2 RMSE Q2 RMSE Q2 RMSE Q2 RMSE Q2 RMSE

VI 

CDK 
general  0.61 0.659 0.63 0.648 
PSDFs 0.66 0.647 0.67 0.638 
PBDEs 0.19 0.693 0.22 0.678

Chemaxon 
Descriptors 

(7.4) 

general  0.67 0.606 0.69 0.588 0.64 0.632 0.65 0.624 0.61 0.664
PSDFs 0.71 0.599 0.73 0.580 0.67 0.639 0.68 0.631 0.63 0.677
PBDEs 0.34 0.626 0.37 0.612 0.37 0.609 0.38 0.603 0.34 0.625
PSDFs 0.56 0.741 0.57 0.726
PBDEs 0.34 0.627 0.33 0.627

VI* 

CDK 
general  0.70 0.573 0.72 0.551                 
PSDFs 0.72 0.573 0.75 0.545
PBDEs 0.20 0.572 0.20 0.571

Chemaxon 
Descriptors 

(7.4) 

general  0.82 0.439 0.83 0.432 0.77 0.507 0.74 0.538 0.72 0.552
PSDFs 0.82 0.458 0.83 0.448 0.76 0.539 0.72 0.573 0.72 0.580
PBDEs 0.66 0.375 0.66 0.374 0.63 0.390 0.59 0.408 0.49 0.456

Inductive 
Descriptors 

general  0.59 0.674 0.60 0.665
PSDFs 0.57 0.715 0.59 0.703
PBDEs 0.32 0.527 0.32 0.530                        

VII 
Chemaxon 
Descriptors 

(7.4) 

general          0.67 0.705             
PSDDs 0.70 0.678 
PSDFs 0.53 0.766 
PBDEs         0.43 0.578             



 

 

                
                                  a                                                                                 b 
 

                  
                                 c                                                                                 d 
 

                 
                                   e                                                                                      f 

Figure 2. The plot shows the predictions for the training set against the 
“distance to model” (DM, selected type is BAGGING-STDEV);  a – dataset I (FSMLR, 
Adriana), b – dataset II* (ANN, Spectrofores), c - dataset IV* (ASNN, Adriana), d – 
dataset V (LibSVM, ChemaxonDescriptors 7.4), e – dataset VI* (ANN, 
ChemaxonDescriptors 7.4), f – dataset VII (LibSVM, ChemaxonDescriptors 7.4). 
Excluded compounds are marked as blue points 
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Table 1. Structures of PSDDs, PSDFs and PBDEs and their AhR binding affinities 

 
 

O

O
O

O

 
 

              A                                          B                                          C 

 
no.  structure R pEC50 no. structure R pEC50 
1 A 2,3,7,8-Cl4 8.000 61 B 8-Br, 2,3,4-Cl3 6.577 
2 A 1,2,3,7,8-Cl5 7.102 62 B 8-CF3, 2,3,4-Cl3 7.060 
3 A 2,3,6,7-Cl4 6.796 63 B 8-I, 2,3,4-Cl3 6.575 
4 A 2,3,6-Cl4 6.658 64 B 8-F, 2,3,4-Cl3 6.230 
5 A 1,2,3,4,7,8-Cl6 6.553 65 B 8-Me, 2,3,4-Cl3 6.870 
6 A 1,3,7,8-Cl4 6.102 66 B 8-i-Pr, 2,3,4-Cl3 6.730 
7 A 1,2,4,7,8-Cl5 5.959 67 B 8-Et, 2,3,4-Cl3 6.799 
8 A 1,2,3,4-Cl4 5.886 68 B 8-t-Bu, 2,3,4-Cl3 6.592 
9 A 2,3,7-Cl3 7.149 69 B 2,3,4-Cl3 5.561

10 A 2,8-Cl2 5.495 70 B 8-OMe, 2,3,4-Cl3 5.900 
11 A 1,2,3,4,7-Cl5 5.194 71 B 8-OH, 2,3,4-Cl3 5.270
12 A 1,2,4-Cl3 4.886 72 B 8-CH2Br, 2,3,4-Cl3 6.635 
13 A 1,2,3,4,6,7,8,9-Cl8 5.000 73 B 2-Cl 3.553 
14 A 1-Cl 4.000 74 B 3-Cl 4.377 
15 A 2,3,7,8-Br4 8.824 75 B 4-Cl 3.000 
16 A 2,3-Br2, 7,8-Cl2 8.830 76 B 2,6-Cl2 3.609 
17 A 2,8-Br2, 3,7-Cl2 9.350 77 B 2,8-Cl2 3.590 
18 A 2-Br, 3,7,8-Cl3 7.939 78 B 1,3,6-Cl3 5.357 
19 A 1,3,7,9-Br4 7.032 79 B 1,3,8-Cl3 4.071 
20 A 1,3,7,8-Br4 8.699 80 B 2,6,7-Cl3 6.347 
21 A 1,2,4,7,8-Br5 7.770 81 B 2,3,4,6-Cl4 6.456 
22 A 1,2,3,7,8-Br5 8.180 82 B 2,3,7,8-Cl4 7.387 
23 A 2,3,7-Br3 8.932 83 B 1,2,4,8-Cl4 5.000
24 A 2,7-Br2 7.810 84 B 1,2,4,6,7-Cl5 7.169 
25 A 2-Br 6.530 85 B 1,2,4,7,9-Cl5 4.699
26 A 2,3-Cl2, 7-F 6.951 86 B 1,2,3,4,8-Cl5 6.921 
27 A 2,3-Cl2, 7-CF3 7.710 87 B 1,2,3,7,8-Cl5 7.128 
28 A 2,3-Cl2, 7-OMe 6.510 88 B 1,2,4,7,8-Cl5 5.886 
29 A 2,3-Cl2, 7-Br 7.320 89 B 2,3,4,7,8-Cl5 7.824 
30 A 2,3-Cl2, 7-I 7.270 90 B 1,2,3,4,7,8-Cl6 6.638 
31 A 2,3-Cl2, 7-CN 5.921 91 B 1,2,3,6,7,8-Cl6 6.569 
32 A 2,3-Cl2, 7-Ph 6.620 92 B 1,2,4,6,7,8-Cl6 5.081 
33 A 2,3-Cl2, 7-t-Bu 6.520 93 B 2,3,4,6,7,8-Cl6 7.328 
34 A 2,3-Cl2, 7-Me 6.429 94 B 2,3,6,8-Cl4 6.658 
35 A 2,3-Cl2, 7-NO2 6.337 95 B 1,2,3,6-Cl4 6.456 
36 A 2,3-Cl2, 7-COOMe 6.270 96 B 1,2,3,7-Cl4 6.959 

1 

2 

3 

4 6 

7 

8 

9 1 
2 

3 

4 6 

7 

8 
9 

2 

4 

3 

6 

5 

6ʹ  

5ʹ  

4ʹ  

3ʹ  

2ʹ  



  Project report – ITN‐ECO             "[yourname, name of project leader]"     25 

 

37 A 2,3-Cl2, 7-H 6.120 97 B 1,3,4,7,8-Cl5 6.699 
38 A 2,3-Cl2, 7-OH 5.350 98 B 2,3,4,7,9-Cl5 6.699 
39 A 2,3-Cl2, 7-NH2 4.541 99 B 1,2,3,7,9-Cl5 6.398
40 A 2-CF3, 3,7,8-Cl3 8.495 100 B 3.000 
41 A 2-I, 3,7,8-Cl3 8.201 101 B 2,3,4,7-Cl4 7.602
42 A 2-OMe, 3,7,8-Cl3 7.495 102 B 1,2,4,6,8-Cl5 5.509 
43 A 2-NO2, 3,7,8-Cl3 7.444 103 C 4-Br 5.102 
44 A 2-F, 3,7,8-Cl3 7.398 104 C 4,4�-Br2 5.585 
45 A 2-CN, 3,7,8-Cl3 7.237 105 C 2,2�,4-Br3 5.357 
46 A 2-Me, 3,7,8-Cl3 6.886 106 C 2,4,4�-Br3 6.086 
47 A 2-OH, 3,7,8-Cl3 5.495 107 C 2,2�,4,4�-Br4 5.745 
48 A 2-CH3CONH, 3,7,8-Cl3 5.301 108 C 2,2�,4,5�-Br4 4.824 
49 A 2-NH2, 3,7,8-Cl3 4.959 109 C 2,3�,4,4�-Br4 6.310 
50 B 8-t-Bu, 2,3-Cl2 6.570 110 C 2,3�,4�,6-Br4 4.553 
51 B 8-F, 2,3-Cl2 5.150 111 C 2,4,4�,6-Br4 5.602 
52 B 8-I, 2,3-Cl2 6.429 112 C 3,3�,4,4�-Br4 6.337 
53 B 8-i-Pr, 2,3-Cl2 6.520 113 C 2,2�,3,4,4�-Br5 7.276
54 B 8-Br, 2,3-Cl2 6.350 114 C 2,2�,4,4�,5-Br5 5.143 
55 B 2,3,8-Cl3 6.160 115 C 2,2�,4,4�,6-Br5 4.886
56 B 8-Me, 2,3-Cl2 5.699 116 C 2,3�,4,4�,6-Br4 6.056 
57 B 8-OMe, 2,3-Cl2 6.510 117 C 3,3�,4,4�,5-Br5 6.432 
58 B 8-OH, 2,3-Cl2 4.440 118 C 2,2�,4,4�,5,5�-Br6 4.398 
59 B 2,3-Cl2 5.401 119 C 2,2�,4,4�,5,6�-Br6 4.367 
60 B 2,3,4,8-Cl4 6.770 120 C 2,2�,3,4,4�,5�,6-Br7 5.398 

 
 


