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Introduction 

QSAR/QSPR approaches: 
Quantitative Structure Activity Relationship (QSAR) approaches are based on the Structure-
Activity Relationship (SAR) assumption, which states that there is a correlation between the 
structure of a molecule and its activity. This seems fair, because if it is not the structure of a 
molecule that invoke an effect, so what does it? We have then to identify what in the structure 
plays a significant role for its activity. For example, whether a specific activity is due to steric or 
electronic effects. It is indeed not straightforward to identify which are the features of interest 
related to the target activity or property.  

In a QSAR approach, one cannot directly link 
the structure and the corresponding activity. 
Indeed, neither humans nor computers 
understand really what a molecule is. 
Representations of molecules can be 
understood, not molecules by themselves. 
And depending on what kind of 
representation is made from a molecule, 
other features will be highlighted. For 
instance, using a Lewis representation does 
not provide information about chirality of 
molecules, but Cram representation does. This issue about representations was nicely 
underlined by the artist René Magritte (see Figure 1). On that drawing one can see a pipe with 
a French sentence underneath: “Ceci n’est pas une pipe”. Its English translation is “this is not a 
pipe”. The first reaction of people watching this illustration would be a misunderstanding, 
because this is clearly a pipe. But Magritte infers by this sentence that this is not a pipe but its 
representation. The difference is the use you will have with both objects. You obviously cannot 
take the representation of the pipe and smoke with it. The representation is then just the 
reflection of a part of the reality, but not the reality by itself. One can extend this 
consideration to the chemical world. Molecules are physicochemical entities and the different 
representation (Lewis, Cram, 3D…) we are making out of them are just a reflection of some 
parts of this chemical reality. The important point is that a false, biased, or incomplete 
representation will lead undoubtedly to false SAR. Moreover, a representation cannot take 
every single feature from the chemical reality into account. This is why different 
representations of the structural information have to be tested to screen the widest range of 
possible effects induced by the molecule’s features. 

Then, a link between the representation and the computers world has to be introduced. This is 
why chemometricians developed the so-called “descriptors”. According to PROF. TODESCHINI AND 

DR. CONSONNI (2003), “A molecular descriptor is the final result of a logic and mathematical 
procedure which transforms chemical information encoded within a symbolic representation of 
a molecule into a useful number or the result of some standardized experiment.” So basically a 
descriptor is a number, and a molecule representation is described by a vector of descriptors. 

Figure 1: the treachery of images, René Magritte, 1929. 
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Of course for each representation you can calculate plenty of different descriptors, some 
strongly correlated to each other.  

To describe a whole dataset of molecules, for each molecule is 
calculated one vector of descriptor and all those vectors are 
merged a matrix of descriptors. This matrix is the description of 
the initial molecular dataset. Then, data mining algorithms are 
used on this matrix in order to extract latent knowledge in order 
to build prediction models. It is usual to use different algorithms 
because all have upsides and drawbacks. Some examples of 
machine learning algorithms are Artificial Neural Networks (ANN), 
Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), 
Partial Least Square (PLS), Multi Linear Regression (MLR), 
Decisions Tree. To analyze model’s accuracy, statistical 
parameters are calculated, comparing measured value and predicted value. Those parameters 
are usually determination coefficient (usually called R2 or Q2), Mean Average Error (MAE), Root 
Mean Square Error (RMSE). One can see on Figure 2 their formulas. Determination coefficient 
is used to overview the correlation of either the points between each others (for Pearson’s 
coefficient) or the points and the line following the equation predicted value = experimental 
value (which is the one in our case). MAE and RMSE provide information about the average 
error of predictions, with the difference that RMSE is more sensitive to outliers (e.g. points 
with a big difference between prediction and measurement). 

Some issues inherent to data mining have to be considered: Frequently, experimental data 
contains noise, due to errors or deviations produced in the data collection phase, as a 
consequence of human error in translating information or due to limitations of the 
measurement procedures. Learning the noise will decrease the model’s ability to predict true 
signals for new data. Since machine-learning methods use training data and try to minimize 
differences between experimental measurements and predicted values, they could also be 
influenced by the noise component and start to learn also noise. The prediction’s accuracy of a 
model which learned the noise will decrease and this is called overfitting. To reduce such 
effect, validation set and test sets are usually used. One of the most common validations is the 
n-cross validation. The training set is split in n parts, n-1 are used to train a model and 1 part to 
validate it. Then another part is selected to be used for validation, and so on and so forth until 
all parts were used once for validation. The accuracy of the model is then calculated only using 
predictions for the validation part. 

QNAR – Applying QSAR on nanoparticles: 
In a QSAR approach applied on nanoparticles (Quantitative Nanostructure Activity Relationship 
QNAR), the important steps to take care of are representations and descriptions of features 
relevant to the targeted activity. Indeed there are no reasons why data mining methods would 
not work with matrices built on nanoparticles information, according to the fact that those 
methods are used on any kind of data (geographic, economic…), whenever there is latent 
information to be found. But nanoparticles do have many more specific features than usual 

Figure 2: Statistical parameters 
usually used to assess the 
accuracy of QSAR models. 
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molecules, and it is a must to take those into consideration. What are the specificities of 
nanoparticles? 

According to the ASTM International terminology for Nanotechnology standard E2456-06, 
Nanoparticles are defined as "a sub-classification of ultrafine particle with lengths in two or 
three dimensions greater than 0.001 micrometer (1 nanometer) and smaller than about 0.1 
micrometer (100 nanometers)". Nanomaterials have the structural features in between of 
those of atoms and the bulk materials. This is mainly due to 
the nanometer size of the materials which render them:  

- Large fraction of surface atoms. 
- High surface energy. 
- Spatial confinement. 
- Reduced imperfections.  

Those structural features do not exist in the corresponding 
bulk materials. Spatial confinement effects on the materials 
bring quantum effects, leading to novel optical, electrical, 
and magnetic behaviors. In daily products, to modify or 
optimize surface properties (stability in solution, reactivity, 
selectivity), it is usual to coat them with atoms, molecules, 
or particles (organic functions, metal oxides, polymers ...). 

Moreover, as stated by SHEVCHENKO ET AL. (2003), "an 
ensemble of nanoparticles is a strongly nonequilibrium nonlinear multivariant system. There 
are no grounds to believe that, in the course of the evolution, this ensemble should tend to 
homogenization rather than to a new hierarchic order according to the self-organization 
principle. This suggests that the structural inhomogeneity is a fundamental property of the 
nanostate." In other terms: a system of nanoparticle is always evolving. This instability infers 
that there is an uncertainty whether an observed effect is due to the nanoparticle or its 
evolution (i.e. agglomerates or aggregates, see Figure 4).  

Then, it was shown by OBERDORSTER ET AL. 
(2005) that size distribution, agglomeration 
state, shape, porosity, surface area, chemical 
composition, structure-dependent electronic 
configuration, surface chemistry, surface 
charge, and crystal structure play significant 
role in the properties of nanoparticles. As 
displayed on Figure 3, nanoparticles can have 
a lot of different shape. And for each shape 
of each specific composition one can have 
different size of particles which will have 
different effects.  

Figure 3: Diversity of the nanoworld, 
Shevchenko et al., 2003 

Figure 4: Illustration about the possible evolution of nanoparticles. 
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THOMAS ET AL. (2011) developed a NanoParticle Ontology (NPO, see Figure 5) to meet the 
terminological and informatics needs in cancer nanotechnology research, such as: 

- Facilitating interdisciplinary discourse among diverse research groups. 
- Enabling semantic interoperability among applications and resources that store and 
exchange nanomaterial data. 
- Providing knowledge support for data annotation in order to facilitate semantic 
integration, knowledge-based searching, unambiguous interpretation, mining and 
inference of data. 

An accurate representation of nanoparticles based on this ontology require information about 
core’s, coating’s, shell’s and surface’s chemical composition for each nanoparticles. Besides, 
nanoparticles being a meta-stable equilibrium, information about the interface 
medium/particle and about the evolution of the particle should be provided as well. However, 
it is not realistic to analyze the evolution of the whole system during an experiment, which is 
why stable nanoparticles or the most stable form of a NP (as with isotopes for instance) are 
usually considered. Unfortunately, considering only stable particles is an important 
approximation of the reality because stability in the medium does not mean stability during 
the measurements, i.e. a contact between NPs and cells could modify part of the surface 
composition which will lead undoubtedly to a modification of interface medium/nanoparticle’s 
surface stability.  

In this NPO, an extensive description is done on NPs’ surface because surface is by definition at 
the interface with the medium. One have to consider surface area, surface charge, and zeta 
potential. Zeta potential is a measure of the stability of a particle in a medium. An empirical 

Figure 5: NanoParticle Ontology from Thomas et al., 2011 
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rule is that particles within the interval [-30 mV; 30 mV] are considered as stable in the 
measured medium.  

Moreover, specific features about the nanoparticle by itself should be considered as well, such 
as particle size, shape and mass. There is important issues about particle size. Indeed, size of 
nanoparticles can modify tremendously their properties. Usually, to provide information about 
size of particles, the Average Particle Size (APS) value is used. Unfortunately, one can have a 
mixture of nanoparticles, that are either different (in order to combine 2 specific properties) or 
just at different aggregation states. In such cases, APS is irrelevant, because if 2 different sizes 
of particles are in one medium, information about the average size is not representative of the 
solution’s reality. 

Furthermore, as NP research is in its infancies still, finding a dataset combining all those 
parameters is a hard task. The set with the more information we found is a set about biological 
activity, made by SHAW AND ALL IN 2008. Composed by 50 nanoparticles, for each is provided 
chemical information about core, coating and surface modification, as well as 4 experimental 
values: Zeta potential, relaxivities R1 and R2, and Average Particle Size (APS). 

  



 Project report – ITN-ECO             Ehret Jacques; Willie Peijnenburg  7 

 

Methods 

Work approach 
Denis Fourches proved in 2010 on Shaw’s dataset that QNAR is a valid approach. However, he 
is not using the intrinsic structure of nanoparticles, but only 4 experimental measurements: 
APS, longitudinal relaxivity R1, transverse relaxivity R2, and zeta potential (see Figure 6) after 
clustering the set in 3. So the basic idea of my work about QNAR is to prove that describing 
nanoparticles using the approach of the NanoParticle Ontology would provide results that are 
significantly better than those without using it. Besides, identifying which features are relevant 
for which part of the particle could be a plus. Only few papers apply QSAR approach on 
nanoparticles, and almost none using complex nanoparticles (e.g. with cores, coatings, and 
surface modifications).  

Out of that I formulated my aim being to use the same dataset, represent it according to the 
NPO (see Figure 5), derive descriptors from such representation, and prove that such approach 
improves significantly the accuracy of prediction compared to using only experimental values. 
Also allowing for extrapolation, as semi-process or mechanistic knowledge is the basis for 
formulating the descriptors. The limits are that the set we are using which is the only one 
allowing our approach is a set of 50 nanoparticles which is few, but the scientific “world” of 
nanoparticles being recent there will most likely be more and more data available in the future 
to come. Indeed, many tests are currently done which will increase the knowledge we have 
about nanoparticles. 

Figure 6: Part of the data table from Shaw and all (2008), which includes information about cores, coating and surface 
modification 
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Describing separately the core, coating, and surface modification with usual descriptors on 
Shaw’s dataset will lead to an unbalanced matrix (50 rows x more than 300 columns). Such 
situations usually facilitate overfitting issues. Moreover, splitting such set into 3 (training, test 
and validation sets) is not doable either, because too few information would be within the 
training set. This is why all calculated models are cross validated using a 5-Cross Validation and 
not tested afterwards. This is a good compromise between overfitting data and having too few 
knowledge to train a model. 

Databases 
To describe accurately all the inherent parts of a nanoparticle, information about intern 
constitution of NPs is necessary. The only set found reaching our expectations (see Figure 6) 
was the one used by SHAW ET AL. (2008) and FOURCHES ET AL. (2010). There was indeed 
information about core, coating, surface modification, and experimental data. Then I 
translated manually all those information into SMILES. For that both websites of chemical 
producers and chemspider (http://www.chemspider.com/) were used. Some surface 
modification (i.e. Alexa Fluor 750) did not have a known structure, so instead of writing SMILES 
code, blank was let. For such particles, the descriptors calculated on such missing parts would 
have value of 0. I decided to build models using and not using particles with such missing 
information, to identify whether a lack of information could still allow building valid models.  

This data set includes 50 nanoparticles with 2 different cores, 5 different coatings, 17 surface 
modifications, and 4 different experimental values. Its endpoint is biological activity of a 
nanomaterial assessed by multiple physiologic cell-based assays in multiple cell types, and at 
multiple doses. The biological activity values are used by FOURCHES AND ALL (2010). 

Description 
Different ways of describing each part of nanoparticles 
were tested: using atomic and molecular descriptors 
(electronical, topological, and those from the 
Chemistry Development Kit CDK), energy values, and 
random numbers (to check whether the data mining 
algorithm needs real information about the 
composition or only need to differentiate categories). 
Moreover, each description was not tested on each 
part of the particle. For instance, after preliminary 
calculations I noticed that information about the core 
can improve a model but any kind of description can 
be used. Indeed, even a random description performs 
as good as accurate description. This is probably due 
to the fact that there are only 2 different cores and 
data mining methods only need to differentiate them. 
This is why I considered that it was not necessary to 

calculate models with 3 different kind of molecular 
descriptors. Moreover, we did not calculate any 3D 

Figure 7: Used Dragon’s descriptors 
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descriptors. Those descriptors need obviously a 3D structure to be calculated. To obtain such 
structure one can use experimental data like X-ray spectrum derived structure (that are not 
available for the particles of interest) or to do a 3D optimization using molecular modeling 
methods. However, molecular 
structures optimized using force fields 
methods should not be used here 
because they would not be related to 
the structural reality about the 
nanoparticle. 

Dragon and Padel descriptor software 
were used to calculate descriptors. For 
topological descriptors from Dragon 
were included all the constitution, 
topological and walking path (see 
Figure 7) descriptors, which includes an 
amount of 164. About electronical 
descriptors, Estate and charges 
descriptors (see Figure 7) were 
integrated, which leads to 185 different 
ones. Hence, both descriptions 
(electronical and topological) were merged to obtain a 349 descriptors matrix in order to check 
whether both information were needed to represent accurately the molecule. 

With Padel software 61 descriptors in 2 dimensions from the Chemistry Development Kit (CDK) 
were calculated (see Figure 8). 3D descriptors were not calculated because of the reasons 
explained before. Then, on cores and coatings were tested a random description (core A = 1, 
core B = 2). Moreover, on cores some energy data were used as descriptors. Those are Dipole 
momentum, Electron energy, Nuclease repulsion, and binding energy. You can see on Figure 9 
which descriptors were calculated and used for which part of each nanoparticle. Out of those 
descriptors, several combinations were tested. With and without experimental data, core, 
coating, and surface modification. And for each combination, all the different ways of 
describing data were tested, which leads to 149 different sets of descriptors. The different 
combinations are illustrated on Figure 10. 

Figure 8: Padel descriptors that were used 

Figure 9: Scheme representing which description was performed on which part of a nanoparticle. 
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Data Mining Method 
To mine all the 149 descriptor sets, the open source software Weka developed by the 
university of Waikato (http://www.cs.waikato.ac.nz/ml/weka/) was used. It was considered 
accurate (open source) and handy because of the possibility to launch calculations using bash 
scripts.  

Before any kind of calculations, the data were filtered by removing nominal values (as name of 
particles), removing useless values (the same value for each particle), and normalizing the 
descriptors between 0 and 1. All this filtering is unsupervised. Using supervised methods are 
not fair because this is a first influence of the property about the dataset. It already bring some 
knowledge about the property and can introduce overfitting that would not be probed by 
cross validation techniques but only by an external validation set, which we do not have. 

Several data mining methods were evaluated such as Artificial Neural Networks (ANN), Multi 
Linear Regression (MLR), Partial Least square (PLS), and Support Vector Machine (SVM). The 
dataset being too small, ANN failed dramatically. Indeed, ANN is highly prone to overfitting, so 
usually half of a data set is used to train the model and half to identify when the learning 
should be stopped. But if there are few data, molecules from the training set will not be 
representative enough of the covered chemical space, the validation set will be too different 
from the training set and this will bias the early stopping point in the learning process. This is 
why using neural networks on small dataset usually fails during the validation procedure (here 
the cross fold validation). Then, MLR was not accurate enough (probably due to the high 
correlation between some descriptors, and/or the unbalanced ratio lines/columns). On the 
contrary, PLS is an improved MLR that deals better with inter-correlated descriptors. Indeed, 
first a Principal Component Analysis (PCA) is operated, which groups correlated descriptors 
according to the amount of Principal Components that was chosen and then a MLR is operated 

Figure 10: Scheme of the data mining workflow that was used to build all the prediction model using weka. 
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on those Principal Components. That is why a focus on PLS and SVM was chosen. Besides, 2 
different kernels for the SVM were tested: Radial Based Function (RBF) and the PolyKernel.  

For each data mining method, specific parameters were modified. For PLS, the amount of 
principal components was modified from 1 to 15. For both SVMs, the tolerance parameter was 
modified from 0.010 to 0.700 (because a convergence was observed around 650) by step of 
0.012. Moreover, each model cross validated using 5 folds. To lower the chance impact on the 
selection of each fold, different seeds for random numbers were used. Seeds were used for 
each data mining method from 0 to 20 by a step of 1 (e.g. 21 different seeds per method). An 
illustration of all this parameters incrementing is shown on Figure 10. 

Which means that on each of the 149 descriptors sets, 3 data mining methods were tested 
each with respectively 15, 66 and 66 different parameters, and each of those were validated 
by 21 different cross validations. Which leads us to more than 1 billion calculated models. 

Hereafter can be found a screenshot of the bash script summoning Weka. “$i” is for the 
different seeds and “$j” for the different parameters, such as amount of principal components 
for PLS. 
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Results 

Analyzing the results 
The aim of our study is to identify whether one 
description is better than another. For 
instance, should the surface modification be 
described by topologic or electronic 
descriptors. To answer this question we have 
to compare prediction’s accuracies of both 
approaches and check whether there is 
significant difference or not. Furthermore, this 
difference should be for one general way of 
describing particles, not for particular cases. 
Indeed it is not representative to say that 
topological descriptors are better to describe 
nanoparticles than electronical descriptors in 
the case of PLS algorithm using 5 principal 
components and splitting the validations fold 
with a seed of value 16. To prove that one 
description is in average better than another 
we compare two files containing the values of 
the same statistical parameter (Q2, MAE, or 
RMSE) and using the same method (PLS, SVM 
RBF or SVM polykernel). On Figure 11 is a 
representative graph for PLS. One can then 
easily understand that to compare two descriptions using the same data mining methods (such 
as PLS or SVM) one has to pair the similar parameters (for instance the amount of principal 
components or the tolerance value). Undeniably there is no point for comparing the accuracy 
of PLS using 14 components with the PLS using 2 components. On Figure 12 one can see a 
table with the Q2 values of PLS method for one specific description. The lines represent the 
different components (line 3 = 2 principal components, line 6 = 5 PC) and the columns the 
different seeds (from 0 to 20). Each value is the value of the Q2 of the model calculated with 
the corresponding parameters. We compared files to files, pairing the mining parameters. 

 

Figure 12: Table grouping Q2 values for models built for one description and one method (PLS), using different 
mining parameters (lines) and seeds (columns). 

Regarding the amount of models, analyzing each of them by hand is not possible. So the power 
of informatics had to be used. The open source software R (http://www.r-project.org/) is 

Figure 11: Representative graph of the data mining 
method PLS. As abscissa the amount of principal 
components, as ordinate the Relative MAE (MAE in %). 
Red curve is the mean of results using the same PC but 
different seeds. Blue curves are mean + and – the 
standard deviation of those results. Black curves are the 
minimum and maximum of those results. 
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perfectly designed to perform the analysis we intended to do. Besides the possibility to run 
bash scripts calling R is really handy to treat large amount of data. 

To identify whether one description is better than another, a first overview can be done by a 
glimpse to both graphs drawn using the statistical parameters values. For instance comparing 
the Q2 of description’s regression using core 1 and core 2. But then, to assess that there is a 
statistically significant difference (which means that the difference cannot happen by chance), 
more advanced tests should be done. In our case, we compare the average values for each 
method parameters (average of each difference seeds for 1 method parameter, such as the 
amount of principal components) paired to the equivalent average for another description. For 
instance comparing the average of the 21 values calculated using different seeds with the 
method parameter “3 Principal Components” with dataset 1, paired to the average of values 
calculated with method parameter “3 Principal Components” with dataset 2. 

Those averages values being the reflection of tries to predict one reality, one can assess that 
they are following a normal distribution. Besides, there are less than 30 values that are 
treated. Those two reasons explain why the significancy test we used is the Student t-test. Two 
values from this test are of interest: the p-value (if p < 0.05, there is a significant difference) 
and the difference of statistical mean (to identify which method is better). Moreover, this 
difference is tested using as much results as possible. It is not because description 1 is better 
than description 2 once that it will be the case every time. This is why for instance to analyze 
the usefulness of experimental values we compared 12 different methods, each with the 3 
different statistical parameters. 

Moreover, when getting close to high values for parameters (14-15 principal components for 
PLS, after 0.550 of tolerance for SVM), specific behaviors were observed. For PLS, big amount 

Figure 13: R-code to operate Student t-tests. As parameters for the comparing functions are the two files to 
compare, and the cutoff to use to take of outliers results (when data mining parameters came close to the 
extremums). Cutoff were the same for all PLS (2 last components out of 15) and all SVMs (20 last tolerances out of 
100) 
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of principal components prone models to overfitting with which leads to a tremendous 
decreasing of the predictive accuracy. Besides, for both SVMs a convergence was observed. To 
avoid that such outlier results would be taken into consideration for the Student test, some 
cutoff was introduced. The R code of this function is available on Figure 13.  

Issue with the dataset 
As already mentioned, some structure of surface modifications were not available (not known 
or not published by the company which is making them). So we calculated models using all 
particles and using only particles we fully knew. For instance models using or not NP6, because 
the surface modification is the dye Alexa Fluor 750 and its structure is not known. Excluded 
particles because of their lack of information were: NP6, NP22, NP23, NP33, NP37. (number 
corresponding to the IDs in Fourches data set) 

On the contrary of our expectations, models using particles with structures those were not 
fully available (i.e with Alexa Fluor 750 as surface modification) performed better than models 
with less particles but full information. We first thought it would be because the model overfits 
more when learning from a set including only particles which structures were fully known, but 
after looking at the training results (models not cross validated), the set with missing 
information was still reaching higher accuracy. We then postulated that it was due to the lack 
of particles, and if we had more particles accuracy of models would be far better. Somehow 
the loss of information resulting by taking of not fully describe particles is higher than the 
perturbation of the models due to lack of information. 

Experimental data 

With - without Is Significant out of 18 Sign if significant difference  
PLS Q2 18 - 

 
MAE 18 + 

 
RMSE 18 + 

SVM Q2 6 
 

 
MAE 6 

 
 

RMSE 6 
 SVMK2 Q2 18 - 

 
MAE 17 + 

 
RMSE 12 + 

Table 1: Comparing accuracies of models using or not experimental data. 

Experimental data were Average Particle Size (APS), longitudinal relaxivity, transverse 
relaxivity, and zeta potential. We aimed to verify whether there is a significant difference 
between using or not experimental data.  

For such purposes, we first calculated the accuracy of prediction using only experimental data. 
Such models performed really badly (Q2 stable around 0.1 for PLS and 0 for SVM, RMAE stable 
around 95% for PLS, 100% for SVM Polykernel and 120% for SVM RBF). Whenever some 
information was added, the prediction’s accuracy increased (for instance using coating and 
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surface description, RMAE for PLS drops to 85% for 5 components and RMAE for SVM RBF is 
stable with an RMAE of 95%).  

Then we compared different models with as only difference in the description set was using or 
not experimental values. For instance dataset 1 being using “core 3” (random numbers) + 
“coat 1” (CDK descriptors) + “surface modification 3” (topologic and electronic descriptors) and 
dataset 2 being using “experimental value” + “core 3” + “coat 1” + “surface modification 3”. On 
Table 1, one can see the results of such test. In red the cases were the amount of significant 
(according to paired Student t-tests) differences was judged as significant using binomial test 
(e.g. when more than 13 out of 18 differences were significant). To resume, this table groups 
the amount of models having a significant difference between using or not experimental data, 
and in red the cases were this amount was significant according to the total number of tested 
cases. 

There is a significant difference between using and not using experimental data for PLS and 
SVM Polykernel (SVMK2) methods. For Q2, RMAE and RRMSE, there are 16 to 18 out of 18 
significant differences. SVM RBF did not have enough significant differences (6 out of 18 for 
each statistical parameters), so we cannot state about the importance of experimental data for 
this method. 

We expected to have better results while using experimental values, but the contrary was 
observed. Not using experimental measurements provides better results. That can be due to 2 
things: Either it is not necessary to use it (even if it is hard to believe) or experimental values 
are somehow wrong. We think that the second option caused that result. Indeed, APS is not 
relevant because as explained in the introduction: if there are not only 1 size of particle but 
two, the average would not describe the particle correctly. For instance, an APS of 50nm could 
describe a suspension of 50nm size particles or a mixture ratio 1:1 of particles having a size of 
30nm and 70nm. Indeed for NP26-30 the size (according to Shaw’s paper) is in between 20 and 
60 nm. Fourches used the average (40nm). Moreover, for NP from 26 to 44, there are 
imprecision about the relaxivities (value is literally <0.5 in Shaw’s set, and Fourches used 0.5 as 
value for his models). 

This is why we observed better results for some data mining methods while not using 
experimental data. 

Core 

Core 2 – core 3 Is Significant out of 18 sign 
PLS Q2 17 - 

 
MAE 15 + 

 
RMSE 12 + 

SVM Q2 10 - 

 
MAE 6 + 

 
RMSE 6 + 

SVMK2 Q2 11 - 

 
MAE 11 + 
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RMSE 8 + 

Table 2: Comparing accuracies of models based on different cores’ description. 

The different cores are: core 1 with CDK 2D descriptors, core 2 with energies, core 3 with 
random numbers (1 and 2), core 4 with Estate descriptors calculated using Dragon. 

First we identified that it was necessary to describe the core of nanoparticles (significant 
improvement if accurate description). Then, depending on the data mining method, different 
descriptions performed better than others. But it was observed that neither describing using 
lot or few descriptors nor describing using random numbers (1 for core 1 and 2 for core 2) 
provided consistently significant differences. Table 2 groups the comparison between 
describing with energies and with random numbers. In red the cases were the amount of 
significant (according to paired Student t-tests) differences was judged as significant using 
binomial test (e.g. when more than 13 out of 18 differences were significant). 

One can see from this table that describing cores does not worsen accuracy, and does improve 
it in some cases, but only random description seems already sufficient to have the effects of it. 
It is also highlighted that for some method (here PLS) using more than random numbers can 
improve some (Q2 and RMAE) statistical parameters. 

Coating 

Coat 4, 5, 6. 
Significance (amount of 

significative success out 12) If significant, sign 

  
4 - 5 4 - 6 5 - 6 4 - 5 4 - 6 5 - 6 

PLS Q2 0 2 1 
   

 
MAE 2 8 4 

   
 

RMSE 12 11 12 - + + 
SVM Q2 12 0 12 + 

 
- 

 
MAE 12 1 12 - 

 
+ 

 
RMSE 9 0 11 

  
+ 

SVMK2 Q2 5 1 2 
   

 
MAE 8 0 10 

  
- 

 
RMSE 3 1 4 

   Table 3: Comparing accuracies of models based on different coatings’ description 

The different coatings are: coat 1 with CDK 2D descriptors, coat 2 with random numbers (1 to 
5), coat 3 with Estate descriptors calculated using Dragon, coat 4 with topologic descriptors, 
coat 5 with electronic descriptors, coat 6 with both electronic and topologic descriptors. 

By early calculations we saw that coatings should better be described using proper descriptors 
and not only random numbers as we did for cores. Table 3 groups comparisons between 
different coatings’ descriptions: Using topological (4), electronical (5), and both topological and 
electronical descriptors (6). In red the cases were the amount of significant differences was 
judged as significant using binomial test (e.g. when more than 10 out of 12 differences were 
significant). 
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According to that table, there is no significant difference between using topological only or all 
descriptors. Then, there is a notable difference when using only electronical descriptors. This 
table shows that adding electronical description improve models accuracy but the most 
important features are to describe topologically the different coatings. 

Surface modification 

Surf 3, 4, 5. 
Significance (amount of 

significative success out 12) If significant, sign 

  
3 - 4 3 - 5 4 - 5 4 - 5 4 - 6 5 - 6 

PLS Q2 0 0 0    

 
MAE 0 6 0    

 
RMSE 0 1 0    

SVM Q2 12 12 0 - -  

 
MAE 12 12 0 + +  

 
RMSE 12 12 3 + +  

SVMK2 Q2 0 2 3    

 
MAE 0 0 0    

 
RMSE 0 0 0    

Table 4: Comparing accuracies of models based on different surface modifications’ description. 

The different surface modifications that were used are: surf1 with CDK 2D descriptors, surf 2 
with Estate descriptors calculated using Dragon, surf 3 with topologic descriptors, surf 4 with 
electronic descriptors, coat 6 with both electronic and topologic descriptors. 

Early calculations revealed that surface modifications was the most important feature that 
should be described. The most significant improvement were achieved using data about 
surface modification description. Then we tried to identify whether a specific feature for this 
should be described. For that extent we compared topological only, electronical only and both 
ways of description. The Table 4 groups the results for that comparison. In red the cases were 
the amount of significant differences was judged as significant using binomial test (e.g. when 
more than 10 out of 12 differences were significant). 

One can see that description does matter only using RBF based SVM, and that it should include 
electronical descriptors. Which means that description about surface modifications is 
necessary, but we cannot yet conclude about which kind of descriptors should be used. 
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Conclusion 
In this work, our aim was to show that QNAR is indeed a valid approach for nanoparticles’ 
activity predictions, and that using a description as shown in the NPO provides better results 
than already tested QNAR (so just using experimental measurements). Nanoparticles research 
is in its infancies still, and large amount of data are rare which is a problem for QNAR. But we 
can already mention that despite the amount of data we showed that QNPR is a valid 
approach for NPs and describing NPs as in the NPO provides significantly better results than 
the other attempts.  

During our study, we showed that experimentally measured property should be relevant to be 
used in QNAR but accuracy of those data is of real importance. Uncertainty about size for 
instance lowers tremendously accuracy of prediction. A system has to be correctly represented 
by such values (for instance APS is not relevant enough, but size distribution could be). 
Furthermore, describing all the constituent (core, coating, surface modification) of 
nanoparticles increases drastically the prediction’s accuracy of models. Even though we cannot 
say yet which kind of description should be done, we proved that molecular descriptors can 
describe accurately coatings and surface modification. Our dataset grouping only 2 kind of 
cores, we cannot state whether molecular descriptors, simple energies, or other description on 
cores should be used. Cores being often metallic with crystalline organization, we thought it 
could be relevant to use group theory based descriptors (providing information about 
molecular symmetry). Besides, we confirmed that the NanoParticle Ontology approach is a 
valid approach and further researches should be based on it. 

It was believed that new descriptors applied to nanoparticles should be developed (like 
derived from TEM images). We showed that the important point about nanoparticles is more 
about the approach of describing rather than the concept of new descriptors. We now believe 
that cores, coatings, and surface modifications should be described with descriptors reflecting 
the specificities of each part (using orbital and symmetry based descriptors for metals, 
topological descriptors for organic groups, …), and this description should be combined with 
accurate measurements of the interaction of the particle within the medium, and it’s big scale 
specific parameters such as size, porosity,… 

Further work should be done on larger datasets including more accurate experimental data, 
with a perfect knowledge of each part of the used nanoparticles (not some surface 
modifications with molecules with unknown structures) 
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Dictionnary: 
NP: NanoParticle 
APS: Average Size of Particles 
NPO: NanoParticle Ontology 
MAE: Mean Average Error 
RMAE: Relative MAE (in %) 
RMSE: Root Mean Square Error 
RRMSE: Relative RMSE (in %) 
RBF: Radial Based Function 
PCA: Principal Component Analysis 
SAR: Structure Activity Relationship 
QSAR: Quantitative Structure Activity Relationship 
QSPR: Quantitative Structure Property Relationship 
QNPR: Quantitative Nanostructure Property Relationship 
The difference between QSAR and QSPR is just that the target is not a molecular activity but a 
molecular property (such as pKA, boiling temperature,…). 
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