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Preface

This research was funded within the Marie Curie Initial Training Network -
Environmental ChemOinformatics (ECO-ITN). Aimed at developing the
careers for Environmental Cheminformatians, this Initial Training Network
(ITN) has been mainly implemented to provide advanced training in both
environmental and computational approaches. This ITN is functioning within
several research groups located in 5 EU countries over a period of four years
until September 2013. Additionally, external collaborations with other
research networks and industrial partners open doors to new future
opportunities for the ECO participants. Internal trainings at other ECO
partner groups facilitate a better way of knowledge exchange within the
training network while the flexibility to opt for external collaborators allow
participants to take their research a step ahead on a global level.

One of the important considerations within the new European legislation on
chemicals and their safe use REACH (Registration, Evaluation,
Authorization and restriction of CHemicals) is to minimize the number of
animal testing by replacing them with suitable alternatives such as in-silico
methods, wherever possible. The primary goals of ECO-ITN can be fits well
with these considerations since the trainees within this project are exposed to
several state-of-the-art computational approaches which can then be applied
to towards the development of novel automated strategies for risk assessment
of chemicals.

Thesis outline

As the title suggests, this work is mainly focussed at providing an
Applicability Domain (AD) perspective towards the QSAR/QSPR models
predicting environmental properties relevant to REACH regulations. A well-
defined AD is one of the prerequisites for a predictive model before it is



considered as validated for regulatory purposes. The main idea behind
compiling this thesis is to provide the reader with all the major insights
towards defining a model’s AD where it can reliably predict the modelled
endpoint for new test samples.

The thesis contents are divided into three major parts summarized as follows:

The first section is an introductory part which guides through the scope of
validated QSARs within REACH. A regulatory insight is presented towards
the consideration of QSAR methodologies as one of the alternatives to
animal testing and the possibility to use its reliable predictions directly or
include them as supplementary information within a Weight of Evidence
approach. The major principles towards QSAR validation are briefly
discussed with a particular attention towards the prerequisite to have a well-
defined AD for reliable predictions.

The second section initially discusses several classical approaches proposed
in the existing literature towards defining the AD of QSAR models in its
descriptor space. In theory, all these approaches attempted to characterize the
interpolation space where a model is capable of making reliable predictions.
The major highlights for each approach include a) the basic strategy
followed to characterize the interpolation space and b) the major advantages
and/or limitations in addressing the model’s AD. Later, a novel AD approach
based on the classical k-Nearest Neighbours principle is introduced which
also features the major highlight of the thesis. This discussion includes the
motivation behind proposing the new approach followed by the description
of the underlying algorithm. Finally, an AD perspective is provided towards
the application of a novel pseudo-distance called Locally-centred
Mahalanobis distance for outlier detection. The results derived from this
newly proposed outlier detection approach provides an excellent platform to
better understand the impact of extreme training outliers on the defined AD
using different AD approaches as well as to verify if the test samples
detected as outliers in the training space could hint for them being unreliably
predicted and thus, likely to get excluded from the model’s AD.



The final section of this thesis work discusses the results derived
implementing previously introduced classical and two novel AD approaches
on several QSAR models from the existing literature. Some of these models
predicting significant environmental properties were intended to contribute
towards REACH implementation and thus, served as ideal case studies to
better evaluate for their AD. The performance of both the novel AD
approaches was evaluated with respect to the classical methodologies.
Moreover, presence of consensus test samples excluded from the model’s
AD with different approaches, further allowed to reflect upon the similar
trends within the underlying algorithms and also added to the confidence in
rendering those test samples being unreliably predicted.

Last but not the least, general conclusions and future prospects for this thesis
work were briefly discussed. All the relevant research articles accepted by
the scientific journals were listed and reported in the appendix.
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Introduction

As an alternative to animal testing, provisions for Quantitative
Structure Activity Relationship (QSAR) predictions towards regulatory
purposes are well-discussed and documented within the framework of
a new European Community regulation for the safe use of chemicals —
REACH. This chapter discusses the regulatory perspective towards the
acceptance of QSARs and introduces the major principles for their
validation, paying particular attention towards defining their
Applicability Domain in order to differentiate the reliable predictions
from extrapolations.

1.1 Scope of QSARs within REACH framework

REACH is a European legislation on chemicals that came into force in 2007.
It is mainly focussed on the risk assessment of chemicals for their safe use
[1]. As a part of this regulation, a major responsibility lies on the industry
towards risk management by providing all the necessary information about
the chemicals and their properties. The outcome of REACH is mainly aimed
at enhancing the human health protection and minimizing the environmental
hazards by the safer handling of chemicals as well as replacement of
hazardous chemicals with suitable alternatives [2,3].

One of the major objectives of implementing REACH is to minimize the
animal testing. To achieve this, usefulness of non-testing approaches has
been highlighted and as a result, REACH encourages the use of cost-
effective methods like QSARSs, Read-Across approaches and expert systems.
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The possibility to train QSARs based on high quality and reliable data can
allow evaluation of several physicochemical and biological properties for
various chemicals relevant to REACH. Moreover, the results derived from
QSARs can also be used as a part of Weight of Evidence (WoE) approach.
Thus, QSARs and other relevant approaches can be significant for REACH
in filling the data gaps prevailing towards the evaluation of several chemical
properties. Depending on the reliability in their predictions, the QSAR
models can directly replace the test data otherwise can be used as
supplementary information to improve the transparency in evaluations [2,3].

QSARs are based on the principle that similar chemical structures can lead to
similar biological activities. In general, QSARs can be thought as a
combination of data analysis and statistical methods that are aimed towards
finding a trend within the descriptor values of chemicals, which in turn can
explain the corresponding trend in their biological activities [4]. A basic
workflow of a QSAR includes data collection and pretreatment, followed by
implementation of a model development technique (for instance, Linear
Regression, Artificial Neural Network and so on) and finally evaluating the
model performance through internal and external validation.

Enormous experimentally derived data for several significant endpoints is
readily available from the existing literature. This data collection can be an
excellent input to train models towards predicting several physicochemical
and biological activities for new test compounds. This idea was realised in
the past decades and consequently, several QSAR models emerged since
then predicting different endpoints. From time to time, more efficient
algorithms were proposed towards model development, thus a range of
different methodologies were in place from a Simple Linear Regression to
Artificial Neural Networks.

1.2 QSAR predictions may be reliable yet restricted

In theory, applicability of QSAR models irrespective of their predictive
reliability is limited. These limitations of a model can be referred to its
structural domain and the response space which defines the scope of that
model [5]. Usually, the predictive models are trained using a limited set of

2



1. Introduction

chemical structures. The level of structural diversity reflected within a
training set strongly relies on the information contained for instance,
functional groups present, chemical categories covered and so on. For
instance, a QSAR model trained using only aromatic structures may not be
useful in predicting a test set of aliphatic structures. The resulting predictions
will be unreliable as they will be beyond the scope of that model. Thus, it is
reasonable to expect that the scope of local models is limited, though it
shouldn’t be confused with their predictive ability.

<Y-»

Validated QSAR

Structural Response
domain space
Inside AD Outside AD
Reliable predictions Unreliable prediction

Figure 1.1 Evaluating the reliability in prediction for new test samples

It is crucial that a model is used for predicting only those test samples that
are structurally similar to the samples used for training purpose [5-9]. It
makes sense because structural similarity implies similarity in the descriptor
values, which in turn can fit the trend in deriving a modelled endpoint. In
other words, test samples must fall within the structural domain described by
its descriptor space. Since, a model is usually aimed to identify a reliable
trend between the descriptor values and the modelled endpoint, the
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prediction of a structurally similar test sample is likely to fall within the
response domain of the training samples. Figure 1.1 informs that test samples
satisfying the limitations of a model within its structural domain and
response space fall within the Applicability Domain (AD) and are thus,
associated with a reliable prediction. On the contrary, those excluded from
the AD where unreliably predicted.

1.3 Validated QSARs for their regulatory acceptance

As discussed in the earlier section, QSARs can be thought amongst one of
the promising non-testing approaches towards regulatory use. However, to
ensure that the QSAR predictions are reliable, several conditions are
necessary to be met by such predictive models. The regulatory authorities
need to make sure that a QSAR model was strictly validated before being
applied for regulatory assessment of chemicals. Before a QSAR model can
be accepted for regulatory use, its validity has to be demonstrated, the test
sample being predicted has to fall within the AD of that model and reliability
in the modelling approach has to be well-documented in order to provide the
transparency in the underlying algorithm.

No formal adoption procedure is suggested for QSARs within REACH.
Thus, information provided to the regulatory authorities towards
demonstrating the model’s validity and reliability in its predictive ability will
be evaluated in deciding upon the adequacy of a model and its predictions
for regulatory acceptance [3]. To address validation procedure, REACH
referred to the principles for QSAR validation adopted by OECD in 2004.
These principles are internationally agreed and each of them highlights
several key aspects relevant to the regulatory acceptance of QSAR models
[3,5-10].

For its regulatory consideration, a validated QSAR must be associated with
these principles listed in the following order [3,10]:
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a) A defined endpoint

As several experimental methods and conditions are feasible towards
prediction of a given physicochemical property or a biological effect, the
first OECD principle provides information about the endpoint being
modelled.

b) An unambiguous algorithm

As several modelling approaches have been proposed from time to time, the
second principle tries to bring transparency in the algorithm used towards
model development.

¢) A defined domain of applicability

In theory, the applicability of a QSAR model is limited to the chemical that
are structurally similar to those used to train that model. The third principle
tries to highlight this feature and informs about the limitations of a proposed
model in its structural domain and response space.

d) Appropriate measures of goodness-of-fit, robustness and predictivity

To better evaluate for the model’s performance, it is essential to understand
if it’s robust, is not overfitted and is able to reliably predict the modelled
endpoint for external test samples. To achieve this, the fourth principle for
model validation provides with all the necessary information derived
performing an internal and external validation using the training and an

external test set, respectively.
e) A mechanistic interpretation, if possible

The mechanistic relevance between the set of descriptors used towards
model development and the endpoint being modelled, can further add to the
confidence in a model, however, it is also understandable that deriving such
mechanistic interpretation is not always possible and thus, the fifth principle
recommends a model developer to provide mechanistic basis for the
descriptors and its relevance to the modelled endpoint, whenever possible.
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1.4 Applicability domain for reliable predictions

As discussed earlier, the third principle of QSAR validation deals with
defining model’s AD. It is one of the prerequisites to have a well-defined AD
before a model can be considered as validated. Several approaches have been
discussed from time to time in the existing literature towards defining a
model’s AD and an entire section of this thesis is dedicated discussing these
methodologies [5].

In theory, all these approaches attempted to characterize the interpolation
space for reliable predictions using different algorithms [6,11-13]. The
efficiency of a strategy can be estimated based on its ability to maximize the
retention of reliable test predictions. Depending on the nature of endpoint
being modelled, QSAR models can be divided into two major categories,
regression and classification models. Regression models are implemented for
quantitative endpoints, such as LC50 in aquatic toxicity, Bioconcentration
factor and so on. On the other hand, classification models deal with
endpoints of qualitative nature, for instance if a test molecule is ready
biodegradable or not ready biodegradable, is a carcinogen or non-carcinogen.
In a case of regression model, the reliability measure is quantitative where a
lowest prediction error is desirable, while in the case of classification
models, the underlying algorithm tries to achieve reliability by maximizing
the allocation of test molecules to their correct classes.

If a test molecule is associated with a very high prediction error or is
allocated to a wrong class, the reliability in its prediction decreases. There
can be several reasons behind deriving an unreliable prediction for instance,
the new test molecule contains some specific functional groups that are
unknown to the training space, the test molecule reacts with a specific mode
of action which cannot be described well with the set of descriptors used for
training that model or there are no structurally similar training molecules
identified for a given test molecule. There may be several other explanations
behind deriving an unreliable prediction; however, most of them converge to
a single conclusion that is the test molecule could be beyond the scope of
that model.
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One of the major concerns about QSARs from a regulatory perspective is the
reliability in their predictions. A QSAR model with a defined a domain of
applicability makes predictions with a defined level of reliability. When this
model is applied to a new set of test molecules, the resulting predictions that
fall within its AD can be associated with that given level of reliability. In
other words, there exists a trade-off between the applicability of a model and
the reliability in its predictions. Thus, from a regulatory perspective, a
prediction falling outside the model’s AD is associated with a lower level of
reliability. A well-defined AD can allow the regulatory authorities to better
evaluate the structural domain in which a model can predict reliably and
prevents from extrapolating beyond the scope of that model [2-3].

There are several ways in which a model’s AD could be addressed. For
instance, in a model’s descriptor space, the defined AD can be thought to be
restricted to the test molecules with relevant descriptor values; in a
mechanistic domain the defined AD can be limited to the test molecules
acting based on the same mode of action represented by the training set
molecules; in a metabolic domain, the AD can be defined based on the
possibilities of the molecules to undergo transformation or get metabolized
[2-3]. With growing awareness about the QSAR validation for its regulatory
acceptance, the development and implementation of different AD strategies
has become one of the promising areas of research in the field of QSAR in
the current years.

From time to time, more efficient approaches have been proposed
overcoming several of the prevailing issues, however until now, no strategy
towards defining a model’s AD has been officially accepted or recognized
[14]. Nevertheless, emerging awareness towards non-testing approaches is
likely to keep the QSARs in focus. A joint effort between regulators,
industry and researchers can shape a better future of such alternative
methods
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Chapter 2

Classical ways of characterizing the interpolation space

This chapter discusses several classical approaches towards defining
the Applicability Domain of a QSAR model in its descriptor space.
The major focus is given on the methodology used to characterize the
interpolation space where the model is expected to make reliable
predictions. Most of the discussed approaches were associated with
their own advantages and limitations. Their implementation on a two-
dimensional simulated dataset and the resulting contour plots allowed a
better understanding of their defined domain of applicability.

2.1 An introduction to the AD methodologies

Characterization of the interpolation space is very significant to define the
AD for a given QSAR model. This characterised space can be associated
with reliable predictions derived from the model and helps the user to
evaluate the reliability in prediction for a given query molecule Depending
upon how efficiently the interpolation space is defined, the clarity and
transparency in distinguishing quality predictions from extrapolations also
improves. Several AD approaches have been already proposed and primarily
they all differ in the way how they characterize the interpolation space
defined by the descriptors used. They can be classified into following four
major categories based on the methodology used for interpolation space
characterization in the model’s descriptor space: range-based methods,
geometric methods, distance-based methods and Probability Density
Distribution based methods [5-6,11-13].




2. Classical ways of characterizing the interpolation space

This chapter discusses all the above-mentioned classical approaches which
were then implemented on the two-dimensional simulated datasets shown in
Figures 2.1 and 2.2.

2.5¢

1.5
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-0.5+
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Figure 2.1 Scatter plot for the first simulated dataset

As shown in Figure 2.1, the first simulated dataset consists of a cluster with
48 training samples and 2 isolated samples (49 and 50) which were localized
distant from each other as well as the cluster.
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Figure 2.2 Scatter plot for the second simulated dataset
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2. Classical ways of characterizing the interpolation space

As shown in Figure 2.2, the second simulated dataset comprised of four
clusters of samples and an isolated sample (49) between them.

The AD defined implementing each of these approaches was visualized
using contour plots for the simulated datasets derived projecting several data
points enough to fill its training space. These plots allowed a better
understanding of the features relevant to the interpolation space
characterized with these existing approaches and wherever possible, also
reflected the prevailing drawbacks in their methodologies.

2.2 Range-based and Geometric Methods

These are considered as the simplest methods to characterize a model’s
interpolation space.

2.2.1 Bounding Box

This approach considers the range of individual descriptors used to build the
model. Assuming a uniform distribution, resulting domain of applicability
can be imagined as a Bounding Box which is a p-dimensional hyper-
rectangle defined on the basis of maximum and minimum values of each
descriptor used to build the model. The sides of this hyper-rectangle are
parallel with respect to the coordinate axes. However, there are several
drawbacks associated with this approach: since only descriptor ranges are
taken into consideration, empty regions in the interpolation space cannot be
identified and also the correlation between descriptors cannot be taken into
account [11,12].

Figure 2.3 provides with the contour plot implementing Bounding Box on
the simulated datasets introduced earlier. As shown in the Figure 2.3a, the
characterized interpolation space accounts for a considerable empty space
between the cluster and two isolated samples.

11
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Figure 2.3 Contour plots for the simulated datasets derived implementing Bounding Box.
First simulated dataset (2.3a) and second simulated dataset (2.3b)

This implies that the presence of one or more outliers in the training
extremities can have a huge impact on the defined AD, which is not
desirable. Figure 2.3b provides with the contour plot for the second
simulated dataset using Bounding Box. As expected, empty regions between
the clusters were considered within the AD as a result of which the isolated
sample (49) was rendered as reliable.

2.2.2 PCA Bounding Box

Principal Component Analysis (PCA) transforms the original data into a new
coordinate system by the rotation of axes, such that the new axes are
orthogonal to each other and aligned in the direction having maximum
variance within the data. These new axes are called Principal Components
(PCs) representing the maximum variance within the dataset [15]. A M-
dimensional hyper-rectangle (where M is the number of significant
components) is obtained similar to the previous approach by considering the
projection of the molecules in the principal component space, however
taking into account the maximum and minimum values for the PCs. The
implementation of Bounding Box with PCA can overcome the problem of
correlation between descriptors but empty regions within the interpolation
space still remains an issue [11-13]. Moreover, selection of appropriate
number of components is significant to implement this approach. For all the
case studies discussed in this thesis, only those PCs having eigenvalues
greater than the average eigenvalue (which corresponds to 1 when data are
autoscaled) were considered. This criterion was chosen in order not to

12
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include the influence of noise that is taken into account by the remaining PCs
with lower eigenvalues. However, in the case of two dimensional datasets
(like the simulated dataset being discussed here), by default both the
resulting PCs were considered.

iabl
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. . . . . .
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Figure 2.4 Contour plot for the simulated datasets derived implementing PCA Bounding
Box. First simulated dataset (2.4a), second simulated dataset (2.4b).

The contour plot in Figure 2.4a was derived implementing the PCA
Bounding Box approach on the first simulated dataset. As clear from the
figure, the issue of accounting for undesirable empty regions in the defined
interpolation space still prevails. As shown in the Figure 2.4b, like the
earlier approach, PCA bounding box included unnecessary empty regions
between the clusters within the defined AD for the second simulated dataset.

2.2.3 Convex Hull

With this geometric approach, interpolation space is defined by the smallest
convex area containing the entire training set. Implementing a Convex Hull
could be challenging with increasing data complexity [16]. For two or three
dimensional data, several algorithms are proposed; however, increase in
dimensions contributes to the order of complexity. This could be a major
drawback for this approach since in practice, not all the QSARs are limited
to a small number of molecular descriptors. Several descriptors at times are
needed to efficiently identify the trends in the modelled endpoint. Thus in
theory, the implementation of this approach is limited to QSAR models with
very limited number of descriptors. Apart from this issue, set boundaries are
analysed without considering the actual data distribution. Similar to the

13
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range-based approaches, Convex Hull cannot identify the potential internal
empty regions within the interpolation space [11-12].

variable 2

variable 1 variable 1

Figure 2.5 Contour plots derived for the simulated datasets implementing Convex Hull.
First simulated dataset (2.5a), second simulated dataset (2.5b).

Figure 2.5a shows the convex hull defined for the first simulated dataset. The
defined hull reflects the interpolation space for reliable predictions. Like the
range-based approaches, this strategy cannot overcome the existing
limitation towards accounting for the empty regions. The AD defined for the
second simulated dataset is shown in the contour plot of Figure 2.5b. The
derived convex hull enclosed all the four clusters within a common
interpolation space thus including the empty regions between the clusters
within the defined AD.

The implementation of this approach in this case was quite simple as the
simulated datasets were two-dimensional. In practice, QSAR models can
have much higher level of complexity with multiple descriptors which could
render this approach quite time consuming.

2.3 Distance-Based Methods

These approaches calculate the distance of test molecules from a defined
point, (usually the data centroid) within the descriptor space of the training
data. The general idea is to compare the distances measured between this
defined point and the test molecules with a pre-defined threshold. The
threshold is a user-defined parameter and is set to maximize the separation of

14
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dense regions within the original data. However, the cut-off value does not
entirely reflect the actual data density [5-6,11-13]. No strict rules were
evident from the literature about defining thresholds for distance-based
approaches and thus it is up to the user how to define them.

2.3.1 Centroid-based distance approach

In this approach, the distances of the training molecules from their centroid
are calculated and based on a user-defined criterion, a cut-off distance value
1s considered as the threshold. For all the case studies dealt in this thesis, the
distance value of the training molecules from their centroid corresponding to
the 95" percentile was considered as the threshold. Later, the distances of the
test samples from the centroid of the training set were derived and compared
with the threshold value. If they were lesser or equal to the threshold, those
test molecules were included within the model’s AD, else discarded.

In theory, this approach can be implemented using a wide range of distance
measures available in the literature however, for all the case studies dealt in
this thesis work, following three distance measures will be considered:
Euclidean, Manhattan and Mahalanobis distances.

Table 2.1 Formulas for different distance measures

Distance measure Formula
P 2
Euclidean d‘vt = z (xxj X )
Jj=1
V4
Manhattan d,= Z Xy — xtj|

Mahalanobis ) ) )
where S is the covariance matrix
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2. Classical ways of characterizing the interpolation space

Given a multidimensional matrix X whose rows represent molecules and
columns their corresponding descriptor values, Table 2.1 provides with the
formulas to derive three different distances between two objects s and ¢
described by p variables. X; and X, represent the jth variable describing the
objects s and , respectively. X, and X, represent the p-dimensional vectors for
the objects s and t, respectively [17].
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Figure 2.6 Contour plots derived for the simulated datasets implementing centroid-based
distance approach. First simulated dataset: Euclidean (2.6a), Manhattan (2.6b),
Mahalanobis (2.6c). Second simulated dataset: Euclidean (2.6d), Manhattan (2.6e),
Mahalanobis (2.6f).
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Iso-distance contours constitute the regions having constant distance
measures and generally their shapes differ with approaches according to the
distance measure considered, for example, ellipsoids for Mahalanobis or
spherical for Euclidean distances [12].

Figure 2.6 shows the contour plots derived on the both simulated datasets
using three different distance measures. As the threshold was set to 95
percentile, the two isolated training samples were not included in the defined
AD with all the three distance measures. The interpolation space mainly
represented the regions around the cluster; the only difference was in the
shape of the iso-distance contours depending on the distance measure used.

Approaches based on calculating leverages are also quite recommended for
defining the AD of a QSAR model [18]. Leverage of a query chemical is
proportional to its Mahalanobis distance measure from the centroid of the
training set. For a given descriptor matrix X with rows as molecules and
columns representing the descriptor values, its leverage matrix (H) is
obtained with the following equation :

H=X(X"X) X" @.1)
where X is the model matrix while X" is its transpose matrix.

Diagonal values in the H matrix represent the leverage values for different
molecules in a given dataset. The molecules that are far from the centroid
will be associated with higher leverages and are considered to be influential
in model building. Leverage is proportional to Hotellings T* statistic and
Mahalanobis distance measure but can be applied only on the regression
models. The approach can be associated with a threshold, generally 2.5 times
the average of the leverage that corresponds to p+1/n where p is the number
of model descriptors while n is the number of training molecules. A query
chemical with leverage higher than the warning leverage can be associated
with unreliable predictions. Such chemicals are outside the descriptor space
and thus be considered outside the AD [11-13].
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2. Classical ways of characterizing the interpolation space

Figure 2.7 shows the contour plots derived on both the simulated datasets
using leverage approach. Based on the above-discussed threshold, the
defined AD for the first dataset (Figure 2.7a) was in the form of an ellipsoid
oriented in the direction showing maximum variance in the data.

variable 2
variable 2

variable 1 variable 1

Figure 2.7 Contour plots derived for the simulated datasets implementing Leverage
approach. First simulated dataset (2.7a), second simulated dataset (2.7b)

The defined AD didn’t include the two isolated training samples and the
prevailing issue of accounting for empty regions within the training space
seems partially resolved here. At a first glance, both the isolated samples are
clearly potential outliers in the training space. As a result, it would be
reasonable to expect a minimum possible influence of such isolated samples
on the resulting AD. The use of above-discussed statistically significant
threshold excludes these two outliers and their surrounding descriptor space
from the resulting AD, indicating that these isolated samples have no role to
play in defining the interpolation space. Thus, the resulting AD was mainly
surrounded around the extremities of the huge cluster. On the hand, the
defined AD for the second simulated dataset (Figure 2.7b) resembled the AD
defined with Euclidean and Mahalanobis distances using the centroid based
approach.

2.3.2 K-Nearest Neighbours based approaches

This set of approaches is based on providing similarity measure for a new
test molecule with respect to the molecules within the training space. The
similarity is accessed by finding the distance of a test molecule from nearest
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2. Classical ways of characterizing the interpolation space

training molecule or its average distances from k nearest neighbours in the
training set. If these distance values are within the user defined threshold, the
test molecule with higher similarity is indicated to have higher number of
training neighbours and therefore, is considered to be reliably predicted.
Thus, similarity to the training set molecules is significant for this approach
in order to associate a test molecule with a reliable prediction [9]. Two
variants of the kNN-based approach were implemented.

The first variant of the kNN-based AD approach [9, 19] was implemented by
calculating average distances of all the training samples from their k nearest
neighbours since the choice of thresholds didn’t follow any strict rules in the
existing literature, the value corresponding to 95" percentile in this vector of
average distances was considered as general threshold. If the average
distance of a test sample from its k nearest training neighbours was lesser
than or equal to the threshold value, the test sample was retained within the
AD.

Usually for classification purposes where kNN-based approaches are quite
commonly applied, a smaller number of nearest neighbours is preferred to
avoid any sort of bias. In theory, this makes sense because a higher number
of k neighbours could take into account training neighbours which may not
be significant towards structural similarity. In the literature, a small number
of neighbours like k = 3 or 5 are quite commonly used to implement different
kNN-based approaches.

Figure 2.8 provides with the contour plots derived for both the simulated
datasets implementing three different distance measures. To derive the plots,
the approach was implemented taking 5 nearest neighbours (k = 5) into
account. The differences between the defined AD using different distance
measures were clearer for the second dataset. The AD was more adapted to
the shape of the clusters for Mahalanobis distances (Figure 2.8f) while some
empty regions were included in the defined AD with the Manhattan distance
(Figure 2.8e).
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Figure 2.8 Contour plots derived for the first simulated dataset implementing k-Nearest
Neighbours based approach. First simulated dataset: Euclidean (2.8a), Manhattan (2.8b),
Mahalanobis (2.8c). Second simulated dataset: Euclidean (2.8d), Manhattan (2.8e),
Mahalanobis (2.5f).

The second variant of the kNN-based AD approach is a nearest neighbour
method for probability density function estimation [20]. In this approach, the
choice of k is crucial and is usually approximately equal to n'.

In a p-dimensional space, let d, (xt) be the Euclidean distance from a test

molecule xt to its k-th nearest training molecule. The dimensional volume of
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2. Classical ways of characterizing the interpolation space

the p-dimensional sphere having radius d, (xt) is given by V, (xt), then the

nearest neighbour density estimator at the data point xt is given by:

kin ki/n
(xt) = =
f(x V.00 [d, (xt)] 2.2)

Here, ¢, is the volume of the unit sphere in p dimensions. In simple terms,
here the probability density function estimate is defined with a window
width d (xt).

Being prone to the local noise, the overall estimates with this approach do
not seem quite convincing. The approach suffers from the irregularities
resulting due to the dependence of the resulting estimator on the d, (xt)

function [20].
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Figure 2.9 Contour plots derived for the simulated datasets using Nearest Neighbour
density estimator.

Figure 2.9 provides with the contour plots for the simulated datasets
implementing this density estimator using k = 5. The defined AD seems to be
well localized around the data clusters excluding the isolated data samples in
both the datasets.

2.4 Probability Density Function Methods

Considered as one of the most advanced approaches for defining AD, these
methods are based on estimating the Probability Density Function (PDF) for
the given data. This is feasible by both, parametric methods where the
density function has the shape of a standard distribution (Gaussian or
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2. Classical ways of characterizing the interpolation space

Poisson distribution, for instance) and non-parametric methods which do not
have any such assumptions concerning the data distribution. A main feature
of these approaches is their ability to identify the internal empty regions.
Moreover, if needed, the actual data distribution can be reflected by
generating concave regions around the interpolation space borders [11-12].
However, there are also several drawbacks associated with this set of
approaches, discussed later in this chapter.

Generally these approaches are implemented by estimating probability
density of the dataset followed by identifying Highest Density Region that
consists of a known fraction (given as user input) from the total probability
mass [11].

Let X be some random quantity with PDF f. Based on this function which

actually describes the distribution of X, the probabilities associated with X

b
can be obtained using the relation, P(a < X <b) = j f(x)dxforalla<b.

Consider that some observed data points, assumed to be samples from an
unknown probability density function are provided, then the estimate of the
density function from these observed data can be constructed using density
estimators [20].

For the random variable X with density f, we can have

F(x)=lim——P(x—h<X <x+h) (2.3)

=0 2N

Thus for a given h, based on the sample proportion falling within the
interval, P(x—h<X <x+h) can be easily estimated. Given a weight

function w, the naive estimator can be written as:

1 & (x-X,
%C):E'ZW(X ; j 2.4)

i=1

The above equation indicates that the density estimator was derived by
placing a box of width 2/ and height (2nh)" on each observation and later
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the summation on all the observations was performed to obtain the final
estimate [20].

Replacing the weight function w with a kernel function K such that,

r K (x)dx=1, the kernel estimator can be derived as:

—oo

] & -X
9(x)=E-;K(X ; J (2.5)

where & is the window width, also referred to as smoothing parameter or
bandwidth.

Taking the analogy of a naive estimator being the construction of density by
sum of boxes centred at different data points, a kernel estimator can be
considered as sum of ‘bumps’ on different data points. Shape of such bumps
is identified by the kernel function K while their width is decided by the
window width /4 [20].

The idea of defining the kernel estimator as the summation of bumps placed
on different data points can be extended to the multivariate datasets. For a

multivariate data set X,,...,X, , the resulting multivariate kernel density

estimator with kernel K and window width 4 can be defined using the
following equation:

I & xt—x,
9(“)—;-;‘}{ ; } (2.6)

where K(xt, x) is the kernel function for p-dimensional xt. K usually is a
radially symmetric unimodal PDF, for instance a standard multivariate
normal density function, defined as follows:

1 1 T
K(tx)=—— oS en) (ex)] )

h"-(27)

As can be seen in equation 2.6, a single smoothing parameter was used
indicating that the kernel placed on all the data points will be equally scaled
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in all the directions. Like for several other statistical procedures, in
multivariate analysis pre-scaling the data could result quite useful as it will
avoid getting extreme differences of spread in different coordinate directions.
For the data scaling carried out, the standard kernel estimator in equation
could be used without using different complicated variants usually involving
more than one smoothing parameters [20].

Once the density estimation was carried out for all the training samples, the
probability density value of the training sample corresponding to a cut-off
percentile was considered as the threshold for AD definition. The test
samples xt that were associated with a probability density lesser than this
threshold were considered outside the model’s AD [5].

2.4.1 Gaussian kernels

Among the multivariate kernel density methods which use the standard
multivariate normal density function as the kernel function, the following
three variants of Gaussian kernel estimators were implemented:

a) Fixed Gaussian kernel

‘Fixed’ indicates that with this kernel, the smoothing parameter/bandwidth &
is constant over all training objects.

For this kernel, the optimal bandwidth was calculated as follows [20]:

ho = A(K)n"7 2.8)
where the constant A(K) in p dimensions was defined as:
AK)={4/(2p+1)}""" 2.9)

Finally, the kernel estimate of PDF was then derived using the equation 2.7.

There are some drawbacks associated with this kernel method. Since the
smoothing is constant, there are several chances of taking spurious noise into
account in the estimates. Even in case the estimates were efficiently
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smoothed, this could be compromised with the essential details in the
distribution getting masked [20].

b) Optimized Gaussian kernel

Instead of using a constant smoothing parameter /, this is optimized by
leave-one-out cross-validation taking into account the differences in standard
deviation of the variables [21].

The kernel estimate is derived as:

2
K(Xt,xi)zﬁ L exp 1 lmy)

J=1 hopt 5N 272’- 2 h(72pt ’ S?

J

(2.10)

where s; 1s the standard deviation of the jth variable.

The optimization procedure requires the estimate of the parameter 4 so that:
max{nf(xi)} (2.11)
i=1

where f(x,) is the probability density of ith sample in cross-validation.

c) Variable Gaussian kernel

With this kernel, smoothing is adapted to the local density of the data. The
strategy towards the construction of estimate is quite similar to that with
classical kernel estimate, however, allowing the scale parameter for bumps to
vary from one point to the other. Moreover, flatter kernels will be allocated
to the sparse regions within the data. For all the case studies discussed in this
thesis, this kernel was implemented with a bandwidth calculated as the
inverse function of the Euclidean distance to k-th neighbour [21].

Given kernel function K, bandwidth £, a positive integer k and d, (xt) being

the Euclidean distance between the test point xt from its k" nearest training
neighbour, the variable Gaussian kernel estimate was derived as follows:
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2 (31, x,)
K(xt,xi):H ! ! A

.exp —_—
J=1 hupt.dk (Xt)S] V27Z. 2 h2 [dk (Xt):lzsf

(2.12)

opt

In this case, the window width on xt is proportional to the distance between
xt and its k" nearest neighbour; the flatter kernels will be associated with
sparse data regions. The bandwidth decides the overall smoothing while its
response to the very local detail will be depending upon the value of k. With
this kernel, the estimate will inherit the local smoothing properties, like in
the case of ordinary kernel estimator [20].

Figure 2.10 provides with the contour plots derived for the both the
simulated datasets implementing the three variants of Gaussian Kernel. For
the first dataset, the AD defined in all the three cases were very much
adapted to the shape of the cluster and like the distance-based approaches,
the percentile approach to define thresholds left both the isolated samples
excluded from the AD. The results derived with Fixed and Variable kernels
converged to a great extent showing no clearly visible differences. The AD
defined with Optimized kernel was slightly more adapted to the shape of the
clusters.
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Figure 2.10 : Contour plots derived for both the simulated datasets implementing three
variants of the Gaussian kernel. First simulated dataset: Fixed Gaussian kernel (2.10a),
Optimized Gaussian kernel (2.10b) and Variable Gaussian kernel (2.10c), Second simulated
dataset: Fixed Gaussian kernel (2.10d), Optimized Gaussian kernel (2.10e) and Variable

Gaussian kernel (2.10f).
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2.4.2 Adaptive kernel methods

Combining the features of kernel and Nearest Neighbours approach, this
strategy constructs the kernel estimate at observed data points allowing the
window width of kernels to vary from one point to another. There is a two
stage procedure involved in determining if a given observation is associated
within a lower density region [20]:

In the first stage, a pilot estimate is constructed making use of other density
estimation methods. This estimate provides a rough understanding of the
density and in turn provides with a pattern of bandwidths that are used to
construct the adaptive estimator in the second stage.

Step 1: Pilot estimate Q(X,) is found for all the i observation such that,
f (x;)>0.
Step 2: Local bandwidth factors A, are defined as follows:

A ={F(x)/s}" (2.13)

where « is called sensitivity parameter, such that 0 <@ <1 and g is the
geometric mean of the f (x;).

Step 3: Adaptive kernel estimate with kernel function K and bandwidth 4 can
be defined as:

1 &1 Xt —X,
Q(Xt)——'zk—p'lf{ = } (2.14)

n i A

Dependence of the bandwidth factors on the power of pilot density provides
flexibility to the overall approach. When a higher power « is used, the
method will be quite sensitive to the variations in the pilot density, whereas
approach will be implemented as fixed width kernel approach when « is
reduced to 0 [20]. For all the case studies discussed in this thesis, an adaptive
kernel method was implemented with fixed Gaussian kernel as the pilot
estimate and sensitivity parameter o equal to 1/2 [14,20].
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Figure 2.11 Contour plots derived for simulated datasets implementing the Adaptive kernel.
First simulated dataset (2.11a), Second simulated dataset (2.11b)

Figure 2.11 provides with the contour plot derived for the simulated datasets
implementing the Adaptive kernel. The resulting interpolation space
resembled to those derived with different variants of the Gaussian kernels.

2.4.3 Triangular kernel

For an observation xt in multidimensional space, this kernel can be
determined as follows:
1| =xt)" (x, =xt)| if |(x,—xt)" (x, -xt)| <1

K (Xt9 X; ) =
0 otherwise (2.15)
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Figure 2.12 Contour plots derived for simulated datasets implementing the Triangular
kernel. First simulated dataset (2.12a), Second simulated dataset (2.12b)
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Figure 2.12 provides with the resulting contour plot for the simulate datasets
implementing this kernel. Again the resulting AD for both the simulated
datasets were quite similar to those defined using different variants of
Gaussian kernels as well as Adaptive kernel.

2.4.4 Epanechnikov kernel

This is an optimal kernel to minimize the integrated mean errors. The

multivariate Epanechnikov kernel is defined as [20]:

%cpl(p+2)(1—%~(xi—xt)T(xi—xt)) if

0 otherwise

1 T
K (xt,x,)= oo (x=xt) (x, -t <1

where ¢, is the volume of the unit p-dimensional sphere. (2.16)

The bandwidth £ has been calculated as [20]:

1/(p+4)

8p(p+2)(p+4)(2\/;)p

(2p+1)cp

h=(n"""") (2.17)
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Figure 2.13 Contour plots derived for simulated datasets implementing the Epanechnikov

kernel. First simulated dataset (2.13a), Second simulated dataset (2.13b)

The contour plot for the simulated dataset implementing this kernel is shown
in Figure 2.13. For the first dataset, the defined AD remained localized
around the cluster while for the second dataset, the AD enclosed the entire
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training space taking into account empty regions like with range and
geometric based approaches.

Probability density distribution methods are advanced and but their
efficiency is also associated with disadvantages of different kernels. For
instance, kernel methods are usually associated with under- smoothing the
tails while the nearest neighbourhood approach tries to overcome this issue
however, by over-smoothing the tails. The adaptive kernel method
overcomes such issues, however being adaptive to the local density.

All the classical AD methodologies discussed in this chapter will be further
implemented on several QSAR models considered as case studies later in
this thesis work. The results derived on these case studies will allow a further
understanding of these discussed methodologies, as well as their advantages
and disadvantages. It will be also interesting to see if the similarities in the
approaches used to characterise the interpolation space is also evident from
the common set of test molecules being excluded from the model’s AD.
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Chapter 3

A novel k-Nearest Neighbours based Applicability
Domain evaluation

Although existing literature discusses several approaches towards
defining the Applicability Domain (AD) of QSAR models, an optimal
approach has yet not been recognized. This chapter proposes a novel
approach that defines the AD of QSAR models taking data distribution
into account and derives a heuristic decision rule exploiting the k-
Nearest Neighbours (kNN) principle. The proposed approach is a three
stage procedure as a part of which, training thresholds are allocated,
criterion deciding if a given test sample should be retained within the
AD is defined and finally, the reliability in the derived results is
reflected by taking model statistics and prediction error into account.

3.1 Background and motivation

As discussed in the previous chapter, several approaches were proposed in
the past years to define the AD of QSAR models. All these approaches were
associated with their own advantages and limitations [5, 11-14]. From time
to time, several approaches were proposed that were aimed to be more
efficient or were thought to overcome several limitations of the existing
approaches.

Due to its simplicity and easy implementation, k-Nearest Neighbours had
been a preferred choice for several proposed QSAR studies [4,9,19,22-26].
The kNN principle basically reflects upon the structural similarity of a test
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sample to the training samples used to build that model. In theory, the
distance of a query sample is considered from its k closest data points in the
chemical space. Lower distance values correspond to a higher similarity,
while the increasing distances signify higher levels of structural mismatch.
The k value plays a significant role in defining how constraint the approach
will be and thus, it can be referred to as the smoothing parameter.

This chapter proposes a new heuristic approach towards defining the AD of
QSAR models. The basis of this novel strategy is inspired from the kNN
approach and adaptive kernel methods for probability density estimation
(Kernel Density Estimators, KDE) [27]. In the classical kNN approach for
AD evaluation [9,19], average distances of all the training samples from their
k nearest neighbours are calculated and used to define a unique threshold to
decide if a test sample is inside or outside the model’s AD (for example, 95"t
percentile). Moreover, in the framework of the probability density function
estimation, the nearest neighbour method provides density estimates
depending on the Euclidean distance to the k-th nearest data point [20].
Following the same concept, the proposed method tries to integrate the KNN
principle with the salient features of adaptive kernel methods [27], which
define local bandwidth factors corresponding to the training data points and
use them to build the density estimate at a given point.

The novelty of the kNN based AD approach proposed here lies in the overall
strategy that is properly executed in a three-stage procedure to encapsulate
and reflect upon several significant aspects towards model validation.
Moreover, some features common to most of the AD approaches were dealt
differently with this approach; for instance, rather than defining a general
threshold as in all the distance-based approaches, each training sample in this
approach was associated with its individual threshold; in order to find an
optimal smoothing parameter k, this approach performed a k-optimization
procedure based on Monte Carlo validation; additionally, model’s statistical
parameters and other relevant aspects were dealt simultaneously to reflect
upon the reliability in the derived results.
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3.2 Methodology

A stepwise execution of the following three stages characterises the
workflow of this approach:

1) defining thresholds for training samples
2) evaluating AD for new/test samples

3) optimizing the smoothing parameter k

To allow a better interpretation of the proposed approach, results on both the
two-dimensional simulated datasets (introduced in Figures 2.1 and 2.2 of
Chapter 2) will be considered throughout the major part of this discussion
and wherever applicable.

3.2.1 Defining thresholds for training samples

Thresholds have a great influence in characterising the AD for reliable
predictions; a test sample that exceeds the threshold condition is associated
with an unreliable prediction.

Like the adaptive kernel methods, instead of defining a general unique
threshold as seen with several classical AD approaches, the proposed
approach allocates a set of thresholds corresponding to the various training
samples.

For a given value of k, threshold allocation process can be summarised as
follows:

a) The distances of each training molecule from the remaining n — 1
molecules are calculated and ranked in increasing order, n being the total
number of training molecules. This will result in a n x (n -1) neighbour
table D; an entry D;; of the table corresponds to the distance of the i-th
molecule from its j-th nearest neighbour:

D,<D,<..<D,

i,n—1
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b) The average distance of each i-th molecule from its k nearest neighbours
is calculated considering the first k entries in i-th row of the neighbour
table:

d,(k)=2 where, 1<k <n-1 and d,(k)<d,(k+1) 3.1

A vector a(k) of average distance values is then derived considering all

the molecules in the training set.

c) Next, a reference value (from now on referred as Ref Val), d (k) is

determined as follows:
d(k)=03(d(k))+1.5-[ 03(d(k))-01(d(k))] (3.2)

where, Q1(d(k)) and Q3(d(k)) are the values corresponding to the 25"

and 75™ percentiles in the vector a(k) , respectively [28].

d) Next, the ordered distances of each i-th training sample from all other n -
1 training molecules are compared with the Ref Val. If the distance value
of the i-th molecule from its given j-th training neighbour (where
1< j<n-1)is less than or equal to the Ref Val, then that distance value is
retained, otherwise is discarded. The number K; of neighbours satisfying
this condition, minimum zero and maximum being n — 1, defines the
density of the i-th sample neighbourhood:

K: {D,<d(k)} Vj:ln-1 (3.3)

e) Finally, each i-th training molecule is associated with a threshold # which
defines the width of its neighbourhood as:

t, =2 (3.4)
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If no distance value was retained for a given i-th training molecule (K; = 0),
then its threshold ¢ would be theoretically settled to 0, but a pragmatic
solution is to set it equal to the smallest threshold of the training set.
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Figure 3.1 First simulated data set. Thresholds t; vs. number of training neighbours K; plot
(k=12).

The plot in Figure 3.1 provides with an overview of the thresholds for all the
50 samples in the simulated dataset. As expected, most of the training
samples within the cluster (for instance, samples 2, 33 and 39) were
associated with higher K; values. On the other hand, obvious potential
outliers (samples 49 and 50) had their thresholds equal to O since they
couldn’t satisfy the threshold criterion even for a single training neighbour
(i.e. K; = 0), thus no distance values contributed to their threshold
calculation. Nevertheless, they were associated with the minimum threshold
equal to 0.42, i.e. the threshold of sample 43.

3.2.2 Evaluating AD for new/test samples

Until this point, each training molecule was associated with its individual
threshold. The next step will be to characterise the AD which usually relies
upon a set of conditions that will decide if a given test molecule can be
associated with a reliable prediction or not.

The criterion used by this approach to associate a given test sample to be
within the domain of applicability can be summarised below.
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Given a test molecule, its distance from all the n training molecules is
calculated and simultaneously, compared to be less than or equal to the
thresholds associated with each training molecule. If this condition holds true
with at least one training molecule, the test molecule will be considered
inside the domain of applicability for that model. Otherwise, the prediction
for that test sample will be rendered unreliable.

More formally, given the training set 7R, for each test molecule j, the AD
decision rule is:

jeAD iff 3ielTR: D,<t, (3.5)

where Dj; is the distance between the j-th test molecule and the i-th training
molecule and ¢; is the individual threshold of the latter. In addition, each
test/new molecule will be associated with the number K; of nearest training
neighbours for which the previous condition holds true. This number can be
assumed as a measure of potential prediction reliability; indeed, high values
of K; indicate that the new molecule falls within a dense training region of
the model’s space, while low values of K; denote that the new molecule still
belongs to the model’s space, but located in sparse training regions. K; equal
to zero rejects the molecule as it being outside the model’s AD since no
training neighbours are identified.
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Figure 3.2 : Contour plot to demonstrate how the AD was characterised for the first
simulated dataset. Metric used: Euclidean distance; k = 12.
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Figure 3.2 provides with the contour plot for the simulated dataset derived
projecting several data points enough to fill the training space. Thresholds
were calculated using 12 nearest neighbours and Euclidean distance. This
choice of k = 12 nearest neighbours was based on the results derived
performing an internal k-optimization, discussed later in this article. The
space enclosed around the cluster represented as black line indicates that all
the data points within this enclosed region are inside the AD. Thus, this
region reflects in a way how the AD was characterised for this two-
dimensional dataset. Area of this enclosed region tends to expand or shrink
depending upon the number of nearest neighbours used for threshold
calculation.

As explained earlier, the extreme outliers in the training space will be
associated with the number K; of neighbours equal to zero and the lowest
possible threshold in the training set. Consider the sample 49 from the
simulated dataset which is an extreme outlier with its threshold equal to 0.42.
If there is a test sample that seems to be quite in the vicinity of this potential
outlier within the descriptor space, the test sample will be associated with an
unreliable prediction since its distance from sample 49 will likely exceed the
small threshold. Now, consider a case, where the descriptor values for
another test sample exactly overlap or are very similar to those for this
potential outlier. In this situation, the distance of that sample from the outlier
will be less than the threshold and thus it will be considered within the
domain of applicability. In theory, this is not wrong because the potential
outlier is still a part of the training space. Practically, the approach retains all
the training samples to characterize the AD but minimizing the role of
potential outliers in doing so. That’s the reason why the first test sample was
excluded from being reliably predicted while the second sample was not.
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Figure 3.3 An illustration of two test samples towards AD criterion of the proposed
approach for the simulated dataset.

However, for the latter the number K; of nearest training neighbours will
likely be equal to one indicating that its prediction has some degree of
uncertainty. In conclusion, there exists a relation between the defined AD
and the impact of training samples in characterising it based on their
threshold values.

3.2.3 Optimizing the smoothing parameter k

Another important aspect is concerning the choice of an appropriate
smoothing parameter k, whose theoretical range is between 1 and n-1. It can
be seen from the AD defined for the simulated dataset using different &k
values in Figure 3.4, very low k values will restrict the domain of
applicability in a very strict manner as compared to the AD derived opting
for larger k values. This is because, an opted k value will have a direct
impact on the threshold calculations which in turn can make it more rigid or
easier for test samples to satisfy the threshold criterion. The strategy
implemented in this thesis to select an appropriate k value was performed by
Monte Carlo validation in ‘n’ iterations, maximizing the percentage of the
test samples considered within the AD, i.e. satisfying AD criterion (Equation
3.5).
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Figure 3.4 Impact of different k values on the defined AD for simulated dataset. a) k =1, b)
k=5 c)k=15andd)k =25.

To perform this validation, in each iteration, 20 percent of the training
samples were randomly chosen as the test set and the above discussed AD
procedure was executed using a range of k values, defined by the user.
Percentage of test samples retained inside the model’s AD for each k value in
every iteration was recorded. Box-and-whisker plots (box plots) were
produced to get an overview of all these derived results. For instance,
consider the plot in Figure 3.3 derived for the simulated dataset showing
percentage of test samples retained within the AD with different k values
(optimization carried out with 20% of samples in the test set and 1000
iterations).
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Figure 3.5 First simulated data set. Box-and-whisker plot of test samples (%) retained
within the AD for different k values during k-optimization.

Figure 3.5 shows that the spread of the box plots for initial k values is quite
large. This may have resulted due to the impact of restricted training
thresholds that excluded several test samples from the AD. With an increase
in k values, the spread narrowed, however the outliers were still present until
k = 17. After this point, the box plots remained unchanged throughout the
plot with no outliers. Similar observations were derived from the mean line
plot which showed a significant rise initially followed by a stable curve until
the first half of the k values. The plot didn’t show any major changes for the
second half of the k values. In order to avoid very high k values good
enough to unnecessarily expand the defined AD, a k value of 12 was opted as
appropriate k for this dataset. The plots dealt earlier (Figures 3.1 and 3.2) for
this dataset were thus derived using this opted & value.

Median quartile in the middle of the box (marked in red) can be referred for
all the k values to get a hint about how many test samples were retained on
average during the optimization process for a given k value. About their
usefulness in the proposed AD approach, box plots showing limited spread
and allowing majority of test samples to be retained within the AD can be
favoured and their corresponding range of k values can be considered to
finally opt for the most appropriate k. Additionally, a line plot is integrated in
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the same figure indicating the mean percentage of test samples that were
considered within the AD for each k value. A simultaneous interpretation of
both these plots can make it easier for a user to decide upon an appropriate k
value.

It was concluded that optimization of k can be a time-demanding procedure
especially in the case of a huge number of samples, but it was also observed
that this approach is quite insensitive to the smoothing parameter k, except
for very small k values which led to the results influenced by local noise.
Therefore, for many applications the optimization of the smoothing
parameter can be avoided and reasonable results can instead be obtained by a
fixed k value empirically calculated asn'” .

3.2.4 An overview of results on other simulated datasets

The simulated dataset discussed so far was used to facilitate a better
understanding of how the proposed approach works. This part of the chapter
provides an overview of how using the same approach the resulting AD was
defined on other simulated datasets.
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Figure 3.6 Second simulated data set. Contour plot to demonstrate how the AD was
characterised. Metric used: Euclidean distance; k = 4.

The contour plot for the AD defined on second simulated dataset (introduced
in Figure 2.2 of Chapter 2) with the new approach is shown in Figure 3.6
which was derived using k = 4. For range and geometric based approaches,
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the isolated sample (49) was considered inside but taking into account
unnecessary descriptor space between the clusters, while for the distance and
probability density distribution approaches, this sample was considered
outside the AD approach due to the percentile-based threshold. With the
proposed approach, all the clusters were enclosed in their own interpolation
space. Since sample 49 was associated with the minimum training threshold,
a small descriptor space around it was considered within the AD indicating
that a test sample extremely similar to sample 49 could be considered as
reliably predicted.
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Figure 3.7 Scatter plot for the third simulated dataset.

Figure 3.7 provides with the scatter plot for an additional simulated dataset
considered to better evaluate the proposed AD approach. As shown in the
figure, this dataset has a cluster of data points in the middle and four isolated
samples surrounding it. It could be easily interpreted that with several
classical approaches like convex hull or bounding box, a lot of unnecessary
interpolation space could be taken into account considering the four isolated
samples within the model’s AD.
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Figure 3.8 Third simulated data set. Contour plot to demonstrate how the AD was
characterised. Metric used: Euclidean distance; k = 4.

Figure 3.8 provides with the contour plot for this simulated dataset. Since the
potential outliers with this approach are associated with minimum training
threshold, a small descriptor space surrounding these isolated samples was
considered inside the model’s AD. As expected, all the clustered data points
were included within the common AD space. The above contour plot was
derived using k = 4.

The overall strategy for this novel approach in defining the AD will be
clearer when the performance of this approach will be further evaluated later
in this thesis using several QSARs from the existing literature as the case
studies. The results derived with this approach will be also compared with

those derived using several other existing AD approaches discussed earlier in
Chapter 2.
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Chapter 4

Outlier detection from an Applicability Domain perspective

Presence of potential outliers in the training space can have a huge
impact on characterizing the interpolation space and the resulting
Applicability Domain (AD) may not be restrictive enough to exclude
unreliable test molecules. On the other hand, the test molecules
detected as outliers when projected on the training space can hint for
their prediction being unreliable and thus can be excluded from the
model’s AD. This chapter introduces a novel Mahalanobis distance
measure (namely, a pseudo-distance) termed as Locally-centred
Mabhalanobis distance and discusses its usefulness towards outlier
detection. The proposed outlier detection approach hints some useful
alerts towards the presence of test molecules that could be rendered as
unreliable after AD evaluation. This chapter implements this newly
derived distance matrix to propose the second novel approach towards
evaluating for a model’s AD.

4.1 Introduction and the scope of this study

Outliers represent the observations that fail to follow the general pattern of
the majority of data samples [29]. Thus, it is critical to detect and
appropriately treat such anomalous observations, contributing to undesired
performance degradation, or, alternatively, suggesting unexpected but
interesting patterns. In recent years, there had been a growing attention
towards dealing with outliers since they can highly impact the variance and
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correlation between variables and as a result, several approaches addressing
outlier detection have been proposed in the literature [30].

Several supervised and unsupervised-learning methods have been proposed
to address outlier mining [31]. Most of the proposed techniques to deal with
outliers were either diagnostic or robust approaches [32,33]. Several classical
techniques performed well, provided the given set of data contained only a
single outlier, however, their inefficiency emerged while dealing with
multiple outliers [34]. Increasing dimensionality of data adds to the
complexity of detecting such outliers. Lacking visual perception for data
with more than two dimensions, restricted the reliable use of such classical
approaches only for two-dimensional data [29]. Moreover, masking and
swamping considerably restricted the usefulness of such classical approaches
towards detection of multiple outliers in calibration. Many times the
presence of some outliers can somehow mask the detection of other outliers.
As a result, some outliers are wrongly identified as normal samples. This
phenomenon is referred to as masking. On the contrary, swamping refers to
the cases where the presence of a subset of observations makes normal
samples being incorrectly identified as potential outliers [32, 33].

Several new and improved detection approaches emerged from time to time
and were attempting to overcome major limitations of classical outlier
detection techniques, however, this domain of data exploration perhaps may
always leave a room for further improvement towards developing an
approach that can tackle the increasing data complexity without comprising
upon the quality of detection accuracy.

The outliers detected amongst molecules constituting the training space can
be quite interesting from an AD perspective. The training molecules detected
as outliers can have a huge impact on the interpolation space defined by
different AD approaches. This impact of training outliers further depends
upon the AD approach being implemented. For instance, range-based
approaches are highly sensitive to such outliers and thus their defined
interpolation space may be unnecessarily broadened accounting for several
empty regions in the descriptor space. On the contrary, the Probability
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density distribution-based approaches as well as the novel kNN based AD
approach (discussed earlier in Chapter 3) will try to minimize the impact of
such potential outliers in defining the interpolation space. Later, test
molecules considered as extreme outliers when projected on the training
space could be more likely to be unreliably predicted upon AD evaluation.
This implies that the outlier detection approaches can be quite useful in
determining the test molecules that are extreme outliers when projected on
the training space. This resulting subset of test molecules can be excluded
from the model’s AD, rendering them unreliably predicted in the model’s
descriptor space.

In this chapter, a new distance measure, called locally-centred Mahalanobis
distance, based on the covariance matrix centred on each dataset molecule, is
introduced and its salient properties are discussed. Two new parameters,
remoteness and isolation degree derived from the resulting pairwise distance
matrix are introduced, in order to better explore the isolation of the
molecules in their local and global space. The information corresponding to
these new parameters when plotted can allow the analyst to better explore
several interesting features of the data, particularly, in terms of detecting
those molecules that are quite diverse from the major pattern followed by the
data [35]. Later, the novel distance measure can be calculated for the test
molecules with respect to the training set molecules. The resulting
remoteness and isolation degree values for test samples can be projected
along with those for the training set molecules. Provided that the thresholds
for training remoteness and isolation degree are defined, test molecules
associated with values for these parameters exceeding their thresholds can be
excluded from the model’s AD. The performance of this new outlier
detection approach towards AD evaluation is better explained taking into
account the results derived on two-dimensional simulated datasets introduced
earlier (Figures 2.1 and 2.2) in Chapter 2. Later, the performance of this
novel outlier detection approach will be further evaluated considering several
case studies later in this thesis.
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4.2 Definition of the Locally-Centred Mahalanobis distance

Let the data matrix X be comprised of n molecules and p descriptors, defined
as: X= (xlTxgxI )T , where x, are column vectors representing the n
observations (i =1, 2,..., n).

The data are assumed to be independently sampled from a multivariate
normal distribution N,(p, X). A general measure of squared distance from an
observation x; to the centroid of the p-dimensional space p, for i = 1,.., n, can
thus be written as follows:

d? =(x,-p) -M-(x,—p) @.1)

where M is a p x p symmetrical matrix. If M = £ where X is the population
covariance matrix, the squared Mahalanobis distance is obtained as:

d?=(x,-p) T (x,—p) 42)

These distances are distributed according to xﬁ and if the parameters p and

X are estimated by the arithmetic mean X and the molecule’s covariance
matrix S:Lr (x,—X)(x,—X)' respectively, the (estimated) squared
n—»1 g

Mahalanobis distances are:
;%) (4.3)

2
The distribution is given by (n=h) MD? 1] Beta(%,
n

n_é’_l), (e.g., see

reference [7]). If S and x, are independent, then %MD}’ OF,,,-
n—1p

Now, if a vector ve R”is selected in the p-dimensional space, the covariance
matrix, centred at v, denoted by S(y) ,can be calculated as:

! .i(xi -v)(x,—v)" (4.4)

n—1 13

S =

Then, it can be easily verified that,
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=S +——(X-V)(X-V) (4.5)

Finally, the squared Mahalanobis distances considering v as the space centre
can be derived as:

MDz(i,V)=(Xi—V)T-S(_Vl)-(Xl.—V) i=1...,n (4.6)

If the above mentioned vector v is now replaced by an observation x;, for j =
1,..., n, the new locally-centred squared Mahalanobis distance between
observations i and j is defined as:

. . T -
MDLG )= (% =%;) 87, (% =) @.7)
where S is the covariance matrix centred on the j-th observation.

It should be noted that the classical covariance matrix S, being centred on the
arithmetic mean vector, minimizes the data variance, while, the new defined
locally-centred covariance matrix encodes different information, data
variance depending on the selected centre. Thus, the new distance measure is
more informative than the classical Mahalanobis distance, which considers
only the arithmetic mean as the data centre.

In order to obtain distances that are independent of the number of descriptors
p, the distance values can be divided by p, thus obtaining locally-centred
average squared Mahalanobis distances:

MDi(i,j):Ami(i’j):;'[(x.—xj)os(;)o(x,.—xj)J ij=1..,n (4.8)

p

Hereinafter these average distances will be considered, for the sake of
simplicity, they will be often shortly referred to as locally-centred squared
Mahalanobis distances, still using the symbol MD; .

4.2.1 Salient features of the novel distance measure

There are two important key aspects related to this novel distance. Like the
distances derived using the classical covariance matrix, the locally-centred
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Mahalanobis distances are invariant to any sort of variable scaling. Secondly,
unlike the classical Mahalanobis distance, the resulting object-centred
distance is asymmetric and consequently is a pseudo-distance; indeed, the
distance between two observations i and j depends on whether the selected

centre is i or j:
MD; (i, j)# MD; (i) (4.9)

This asymmetry is accounted due to the presence of all other observations
and their resulting overall influence in deriving the distances, thus reflecting
the significance of information retrieved from the locally-centred covariance
matrix.

The asymmetry between MD; (i, j)and MD; (j,i)seems to have a significant
meaning. In fact, a higher value of MD; (i, j)in contrast with a corresponding
lower value for MD; (j,i) indicates that the molecule i belongs to a relatively
denser region with respect to the molecule j, which appears to be more
isolated. This consideration can be further supported by the fact that, when j
is isolated being the centred object, it shows a higher variance than the case
when i is the centred molecule, which unlike the earlier, is surrounded by
several molecules in its vicinity. As seen from the way these locally-centred
Mahalanobis distances are derived, the variance is calculated as the
reciprocal in the distance formula and as a result, j tends to seem closer to i,
while on the contrary, molecule i with a lower variance tends to seem
comparatively further distant from j. Usually, the molecules with lower
variance can be thought of being either located in a cluster or surrounded by
several similar molecules in their vicinity.

The variable space based on Mahalanobis distances calculated using the
classical covariance matrix is estimated by an ellipsoid (or hyper-ellipsoid),
while in the case of locally-centred Mahanalobis distances, the variable
space is defined by a family of ellipsoids (or hyper-ellipsoids) due to the
multi-centred approach. Thus, a more data-driven shaped descriptor space is
determined using this novel distance measure.
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4.3 Remoteness and Isolation degree plot

It is quite easy to interpret the significance of columns and rows in the pair-
wise distance matrix MD’, resulting from the novel average locally-centred
squared Mahalanobis distances. In fact, each j-th column constitutes the data
centre and represents how that j-th molecule "globally perceives" each i-th
molecule, also taking into account the overall influence of all the other
molecules, while each i-th row represents how that i-th molecule is "globally
perceived" by all the other molecules.

Each j-th column of the MD; matrix contains information about the
distances of all other i molecules from the j-th molecule being the centre.
The minimum value of a j-th column can be taken into account to represent
the squared distance of the j-th molecule from its nearest neighbour; this is
termed as Isolation degree (Idg):
o 2 . .

Idgj =min, ([MDL:L]) e (4.10)
Similarly, each i-th row of the MD; matrix contains information about the
squared distances of the i-th molecule as it is perceived from all the other

molecules. Thus, the average squared distance value for each i-th row is
taken into account and termed as Remoteness (Rem):

n

> [MD; |

= Y

Rem, =——— (4.11)

The values of remoteness can range from a minimum greater than zero and a
maximum equal to (n-1)/p, while isolation degree for any given molecule
remains localized between 0 and 1. It should be also noted that:

y Rem, Zn:i MD; |
; _ A ./‘:1[ l/ -1 4.12)
n n~(n—1)

i.e., the average value of the remoteness vector or, in other words, the
average value of the matrix MD? elements is equal to one. Then, the
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remoteness could be interpreted as the influence that each molecule exerts
over the covariance structure of the data, i.e. the values significantly larger
than one identify the most influent molecules.

4.3.1. Usefulness towards outlier detection

The remoteness highlights objects which are far from the bulk of the
remaining objects, i.e. they can be considered as classical outliers in the
selected variable space; the Isolation degree detects a different kind of
“anomalous” objects, i.e. those objects that, although located within the
variable space, are isolated from the other ones or, in other words, these
objects are surrounded by objects not so near. Therefore, a scatter plot of
Remoteness vs. Isolation degree, called RI plot, for the data set in analysis
can be a useful tool for exploratory purposes.

The thresholds to detect remote and isolated samples, for the two
distributions of remoteness and isolation degree, are defined as the upper
“fences” in the box & whisker plots [28]:

threshold = 0, +1.5-(0, - 0,) (4.13)

where Q; and Q3 are the first and third quartiles for remoteness and isolation
degree values, respectively, and their difference is the interquartile range.

To better evaluate the role of remoteness and isolation degree towards
potential outlier detection, the results for both the simulated data sets
introduced in Chapter 2 were analysed. As mentioned earlier, the first
dataset consists of a cluster of 48 data samples and two additional samples
(49 and 50) quite distant from each other as well as from the main sample
cluster (Figure 2.1) while the second dataset had its data samples roughly
divided within four clusters and a single data sample (49) localized more or
less between these clusters (Figure 2.2).

The locally-centred squared Mahalanobis distances were calculated for the
two simulated and the object-oriented pair-wise distance matrix MD; was
derived. The average distance values from each row and the minimum
distance values from each column were retrieved from this distance matrix to
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derive the remoteness and isolation degree vectors, respectively. The values
of these two parameters were used as the point coordinates of all the data
samples in the RI plot.

Thresholds for both remoteness and isolation degree were calculated
according to equation 4.13 and reported in the RI plots by red lines. The data
samples associated with very high values for remoteness were classified as
outliers of first type being far from the variable space defined by the bulk of
the data, i.e. remote samples; the data samples associated with high values of
isolation degree were classified as outliers of second type, they being
isolated from the other samples in spite of their position within the variable
space, i.e. isolated samples.

The RI plot obtained by the locally-centred Mahalanobis distance for first
simulated dataset is shown in Figure 4.1. As expected, two data samples 49
and 50 were highly isolated from the cluster and far from the bulk of the
data. Both these data samples were associated with high values for
remoteness and isolation degree which clearly indicated that they are quite
isolated in their local and global spaces. Moreover, data sample 27 was
associated with a higher value of isolation as compared to the other samples
in that cluster.
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Figure 4.1 RI plot for the first simulated data set
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A careful observation of the scatter plot in Figure 2.1 indicates that sample
27 is within the extremities of the cluster as well as no other data samples
from the cluster are very closely located in its vicinity. This indicates that the
new approach is quite sensitive to the isolation of the samples

Remoteness

+49

0.05 0.1 0.15 0.2 0.25 0.3
Isolation degree

Figure 4.2 RI plot for the second simulated data set.

The second data set used as case study was a two—dimensional simulated
data set introduced in chapter 2 with data samples roughly divided within
four clusters and a single data sample (49) localized more or less between
these clusters. The scatter plot of this data set (Figure 2.2) indicates this
isolated sample clearly being a potential outlier; however, it was also
interesting to see how the outlier detection techniques were able to analyse
this data.

As shown in Figure 4.2, the novel outlier detection approach was able to
clearly identify sample 49 as a second type outlier based on its extreme value
for isolation degree. Remoteness for the data samples was not extremely high
for any specific data sample and then no first type outliers are detected.
Samples 17, 30 and 32 that were not very closely located to their nearest of
the four clusters were also identified with higher values of isolation degree.
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4.4 Implementing the novel approach towards AD evaluation

So far, the usefulness of remoteness and isolation degree was explored
towards outlier detection. As pointed earlier, if these new matrix parameters
can be calculated also for test samples and simultaneously projected with
those for the training samples, the resulting plot could be quite useful to
evaluate if the test samples can be reliably predicted or not. The test samples
exceeding the defined training thresholds for remoteness or isolation degree
or both of them can be excluded from the model’s AD.

To implement this strategy for AD evaluation, remoteness and isolation
degree of the test samples were determined as follows:

For a given test set Xt with m observations, the remoteness of the test sample
xt; was derived by calculating its locally-centred Mahalanobis distance from
each training observation X; centering at x;, such that j = 1,..., n. and then
finding the mean of the resulting distance vector:

WD, j)zﬂmip(w.):;-[(n[—xj)T«S(‘})-()ct[—x_/)} j=lun (4.14)

1 n T
_'Z(X,‘ —Xj)(X'. _Xj)

where S(j) = e

i=1
On the other hand, the isolation degree of the test sample xt; was derived by
calculating its locally-centred Mahalanobis distance from each training
observation x; centering at the i-th test object xt; and then finding the

minimum value from the resulting distance vector:

mi(j,i)=MDz;j’i)=117-|:(xj—xtl.)T-S.‘-(x.—xtl.)] j= Lo (4.15)

1 n
where, S, = — DX, —xt,)(x, —xt,)"
=

The test molecules exceeding the remoteness and isolation degree thresholds
in equation 4.13 can be excluded from the model’s AD.

Considering these definitions for remoteness and isolation degree for training
and test molecules, contours plot was derived by projecting several test
samples enough to fill the training space of both the simulated datasets.
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Figure 4.3 AD contour plot for the first simulated dataset

Figure 4.3 provides with the contour plot for the first simulated dataset. The
defined interpolation space consisted of all the test samples that had their
remoteness and isolation degree values below the defined thresholds. The
AD seems quite adapted to the shape of the data cluster which was not so
clearly interpretable with other classical approaches. Moreover, the choice of
slightly higher thresholds for test samples is quite visible in the plot.

Figure 4.4 provides with the contour plot for the second simulated dataset.
The defined interpolation was mainly concentrated around the four clusters.
Due to the choice of thresholds, the defined AD seemed slightly extended
around the cluster’s extremities. Like in the case of first novel AD approach,
this approach also considered the descriptor space around the isolated sample
(49) within the defined AD.
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Figure 4.4 AD contour plot for the second simulated dataset

Both the simulated datasets were simpler in dimensions and were mainly
chosen to provide with a better understanding of the proposed approach
towards AD evaluation. The potential of this novel approach will be further
clearer while deriving the AD for several multidimensional case studies later
in this thesis.
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Chapter 5

Case studies

This section is entirely dedicated towards implementing the already
discussed classical and novel AD approaches on several QSAR models
from the existing literature. Each case study is initially introduced
highlighting the five major OECD principles for model validation,
followed by discussing the results derived evaluating for their AD
using various approaches. The test samples considered as consensus
outliers with different AD approaches hint the possible similarities in
the underlying AD algorithms as well as higher chances of rendering
those test samples being unreliably predicted. Finally, the impact on
model’s statistics was evaluated after excluding the test samples that
were rendered outside the model’s AD using all the listed approaches.

5.1 An overview of the case studies

The earlier chapters discussed several classical approaches from the existing
literature towards defining the AD of QSAR models. Moreover, two new AD
approaches were also introduced and illustrated using simulated datasets. In
this section, several QSAR models from the existing literature will be used
as case studies to evaluate their AD implementing different classical and
novel approaches discussed earlier. All these models will be introduced
based on the five OECD principles for model validation. This will help to
better understand the validity of these models. Later, the results derived
implementing all the earlier discussed AD approaches on these models will
be provided. An overview of all the test samples excluded from the model’s
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AD with different approaches will be provided including their names, CAS
numbers and their error in prediction will be provided.

Most of the case studies discussed in this chapter are of regulatory relevance.
CAESAR Bioconcentration factor models [36-38] and QSAR models for
ready biodegradability of chemicals [39], were clearly developed to
contribute to the REACH implementation.

5.2 Assessing reliability in derived results

For all the regression models considered, before the AD evaluation was
performed, an overview of the model’s statistics (retaining the test set in its
entirety) was provided using the following key parameters:

a) Determination coefficient R’

7R

Z()A’z _yi)z
R: =]__i
i(yi_ym)z (51)

b) Root-Mean-Square Error RMSE

RMSE = (5.2)
¢) Predictive squared correlation coefficient Q2 [40,41]
|:ZTS:()A’, - yj)2:|/nTS
Q' =1-r= (5.3)
|:Z(y,' _?TR)2:|/nTR
i=1

d) Root-Mean-Square Error in Prediction RMSEP
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RMSEP = G4

where, Y, is the measured response value for the i-th training sample and J,
its predicted value; y; is the measured response value for the j-th test sample
and y i its predicted value; ntr and ntg represent the total number of training

and test samples, respectively, and Y, is the mean response of the training
set.

Later, when different AD approaches were implemented on these models, in
order to reflect upon the model’s predictive ability, following key parameters
were evaluated:

a) Number of test samples excluded from the model’s AD.

b) Q7 calculated from the test samples retained within the AD

c) List of all the test samples (their sample IDs) considered outside the AD.
Additionally, for the novel kNN based AD approach discussed in Chapter 3:

a) For each j-th test sample, its absolute standardized error calculated as:

:‘yj_yj

SE.
j 5,

(5.5)

where, y;is the measured value for the j-th test sample and y ; 1ts predicted

value; sy the standard error of estimate derived from the training set.

b) The information about how many times the threshold criterion (Equation
3.5) is satisfied by each test sample, that is, how many training neighbours
(i.e. K)) are located at a distance less than or equal to their threshold values,
from a given test sample.

In theory, a test sample satisfying the threshold criterion several times (i.e.
having high Kj) is expected to be predicted with higher accuracy. This can
be desired since less distant training neighbours indicate a higher structural
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similarity of the test sample. On the contrary, a test sample satisfying the
threshold criterion for no training neighbours (K; = 0) indicates that there
wasn’t any training sample similar enough to reliably predict that test
sample. K; (number of training neighbours) vs. absolute standardised error
plot for all the test samples derived was derived.

For all the classification models on ready biodegradability of chemicals,
following key parameters were evaluated to determine their predictive ability
[38]:

a) Specificity (Sp)

_IN
" TN+ FP (5.6)

Sp

where, TN (True Negatives) is the number of not ready biodegradable
samples that were classified as not ready biodegradable. FP (False Positives)
is the number of not ready biodegradable samples wrongly classified as
ready biodegradable.

b) Sensitivity (Sn)

Sn = TP
TP +FN 5.7

where, TP (True Positives) is the number of ready biodegradable samples
correctly predicted as ready biodegradable. FN (False Negatives) is the
number of ready biodegradable samples wrongly predicted as not ready
biodegradable.

c) Error Rate is calculated as the complement of the average of specificity
and sensitivity.

It should be remembered that all the AD approaches discussed in this thesis
define a model’s AD in its descriptor space. However, an attempt has been
made in this chapter to better understand if the observations made evaluating
for a model’s AD in its descriptors space can be well reflected on its
response domain. To achieve this, test samples excluded from the model’s
AD were evaluated for their corresponding error in prediction (absolute
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difference in their experimental and predicted response values). It could be
interesting to see if the test samples rendered as unreliable in the model’s
descriptor space are also associated with higher prediction error or not. In
theory, this is a reasonable assumption since structurally similar chemicals
can be associated with similar descriptor values which collectively are able
to capture the increasing or decreasing trend of the modelled endpoint. Thus,
if a query/test chemical is excluded from the model’s descriptor space, it
cannot be predicted reliably either. However, in practice, exceptions may
arise due to several reasons for instance, defects in experimental
techniques/experimental variability or even over-fitted models.

5.3 CAESAR Bioconcentration factor models
5.3.1 Model description
OECD principle 1: A defined endpoint

CAESAR hybrid model provides prediction for Bioconcentration factor
(BCF) in fish. Experimental data on BCF was obtained for two fish species,
Cyprinus Carpio and salmonids using the OECD 305 protocol.

From regulatory point of view, BCF is of very high significance for REACH
implementation. The BCF value for a given chemical can decide if it can be
identified as bioaccumulative (if BCF>2000 or logBCF>3.3) or very
bioaccumulative (if BCF>5000 or logBCF>3.7).

All the experimental BCF values used for developing this model were
converted to their log units [38].

OECD principle 2: An unambiguous algorithm

CAESAR BCF model is a hybrid model derived combining the outputs from
two different models (model A and model B). The training set of both these
models consists of 378 samples, while the validation was carried out using a
test set with 95 samples.

Both these models are Radial Basis Function Neural Network (RBFNN)
[42], however, the earlier used an heuristic approach while the latter
implemented Genetic Algorithm for descriptor selection. Table 5.1 reports
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the descriptors associated with model A and B, respectively. AD evaluation
will be carried out for both these models [36-38].

Table 5.1 List of descriptors used to develop CAESAR BCF models

Descriptor Description Models

MlogP Moriguchi octanol-water partition coefficient Models A and B
Cl-089 Cl attached to C1(sp2) Model A
GATSS5V Geary autocrrelatin — lag 5/weighed by atomic Model A

van der Waals volumes

X0Solv Solvation connectivity index Model B

SsCl Sum of all (—Cl) E-State values in molecule Model B

AEige Absolute eigenvalue sum from electronegativity Model A

weighted distance matrix

Highest eigenvalue n. 2 of Burden matrix / weighed by atomic Models A and B
polarizabilities.

Moan autocorrelation — lag 5/weighed by atomic van der Waals Model B
volumes

BEHp2

MATS5V

OECD principle 3: A defined domain of applicability

The CAESAR model allows a user to understand its defined domain of
applicability in the following three ways:

a) By evaluating the ranges of descriptor values: If a given test sample has
any of its descriptor values outside the defined ranges, the user will be
provided with an alert.

b) Identifying chemical fragments not included within the training space: If a
test sample contains a chemical fragment that is not included within the
chemical diversity of the training set, an error message will be generated.

c) ldentifying the most similar training samples: For each test sample, six
most similar training samples are shown. This allows a better understanding
of the structural similarity between the predicted sample and the training
space. This can also provide a good basis to interpret the reliability in
prediction derived for the test samples [36-38].

OECD principle 4: Appropriate measures of goodness-of-fit, robustness and
predictivity
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Table 5.2 provides with the default statistical parameters for model A and B,
retaining all the test samples within the model’s AD.

Table 5.2 Model statistics for the CAESAR BCF models.

Model Training set Test set
R’ RMSE 0’ RMSEP @
1) Model A 0.804 0.591 0.797 0.600
2) Model B 0.810 0.581 0.774 0.634

OECD principle 5: A mechanistic interpretation, if possible

The authors provided the following a posteriori interpretation towards the
model descriptors in the QSAR Model Reporting Format (QMRF) of this
model: The model is significantly relying on the MlogP descriptor. This
descriptor seems to work quite well with chemicals containing C, N and O
atoms, while it may not be very accurate for samples containing other atoms
like CI and P [38].

5.3.2 AD evaluation for CAESAR BCF model A

Table 5.3 provides with an overview of the results derived implementing
various classical and novel AD approaches. Implementing PCA Bounding
Box rendered two test samples outside the AD providing the most noticeably
positive impact on the resulting Q°. These samples were retained within the
AD with classical Bounding Box. Excluding 29 samples outside the model’s
AD, Optimized Gaussian kernel approach was associated with the most
restricted AD and the highest recorded 0? of 0.830 but obviously due to
several test samples being outside the AD. The Q” slightly improved with the
novel kNN-based AD approach, while no positive impact was observed with
the LCMD based method with 8.4 % of the test samples discarded from the
model’s AD.
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Table 5.3 An overview of the results for AD evaluation on CAESAR BCF model A (Test set:95
samples)

AD method Samples Q° List of samples outside AD
outside
AD (%)
Bounding Box 0 0.797 None
PCA Bounding Box (Using first 2 PCs) 2.1 0.804 3340
Convex Hull 0 0.797 None
Leverage approach 4.2 0.803 18334361
Centroid dist. (Euclidean, 95 percentile) 4.2 0.804 33436191
Centroid dist. (Manhattan, 95 percentile) 4.2 0.804 33436191
Centroid dist. (Mahalanobis, 95 percentile) 42 0.803 18334361
kNN general thr (Euclidean, k=5) 8.4 0.797 333344061 828394
kNN general thr. (Manhattan, k=5) 7.4 0.799 333346182839
kNN general thr. (Mahalanobis, k=5) 10.5 0.794 333344061 8082839194
Gaussian kernel: fixed 10.5 0.794 3243334406182839194
Gaussian kernel: optimized 30.5 0.830 391222243334 38404547 5153
54 56 61 68 69 75 76 80 82 83 87 89
91939495
Gaussian kernel: variable 15.8 0.787 392433344043 61 8082838991
94 95
Adaptive kernel 7.4 0.800 3334361828391
Epanechnikov kernel 8.4 0.800 333404361839194
kNN kernel (k=8) 9.5 0.797 3333440436183919%
Triangular kernel 11.6 0.792 324333440618082839194
Novel kNN approach (Euclidean, k=8) 6.3 0.801 3334061 8283
Novel kNN approach (Manhattan, k=38) 8.4 0.797 3333461 8082839
Novel kNN approach (Mahalanobis, k=8) 8.4 0.797 333344061 828394
Novel LCMD approach 8.4 0.786 3344361 8082839
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Number of times considered outside AD

33 61 3 83 82 94 34 40 91 43 80 24 9 18 89 95
Test samples

Figure 5.1 Consensus test samples excluded from the AD of CAESAR BCF model A

Figure 5.1 provides with the consensus test samples excluded from the
model’s AD implementing various classical and novel proposed AD
approaches. Test samples 33 and 61 were identified as unreliable predictions
implementing most of the AD approaches. Such resemblance in the final
output from different approaches strengthens the decision to exclude
unreliable test samples.

Table 5.4 provides with some useful information about the test samples
considered outside the model’s AD with different classical and novel
approaches. Apart from several unreliably predicted samples, the list in this
table also specifies some cases where the prediction error was quite
negligible. For instance, sample 34 (tetrabromo-2-chlorotoluene) that was
excluded from the model’s AD with several approaches but was associated
with a prediction error of log 0.01 units.
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Table 5.4 An overview of all the test samples excluded from the AD of CAESAR model A with

different approaches
Sample Exp. Pred. Abs.

IDp Name CAS logBlz?F logBCF pred.error

3 Pentachlorophenol 87-86-5 2.50 1.84 0.66
3,6-Dichlorodibenzofuran 74918-40-4 3.01 3.13 0.12

12 2,2,4-Trimethyl-1,3- 144-19-4 -1.00 0.64 1.64
pentanediol

18 3,4-Dichlorophenol 95-77-2 1.69 1.33 0.36

22 2,6-Dicyclohexylphenol 4821-19-6 2.89 2.10 0.79

24 2-Hydroxy-4-n- 1843-05-6 1.90 1.94 0.04
octoxybenzophenone

33 Hexachlorobenzene 118-74-1 4.23 2.90 1.33

34 Tetrabromo-2-chlorotoluene 39569-21-6 3.98 3.97 0.01

38 Monochlorobenzene 108-90-7 1.13 1.61 0.48

40 Pentachlorobenzene 608-93-5 3.49 3.22 0.27

43 Trichlorometane 67-66-3 0.93 0.54 0.39

45 1,10-Dibromodecane 4101-68-2 1.78 2.68 0.90

47 Tetrachloroethylene 127-18-4 1.72 1.13 0.59

51 n-Pentadecane 629-62-9 1.22 2.68 1.46

53 2,2"-Methylenebis(6-t-buthyl- 119-47-1 1.97 2.33 0.36
4-methylphenol)

54 Benzene-1,2-dicarboxylic acid 117-81-7 1.19 1.47 0.28
bis (2-ethylhexyl) ester

56 Triethanolamine 102-71-6 0.59 1.01 0.42

61 2,4,6-Trichloroaniline 634-93-5 2.00 1.41 0.59

68 2,2"-Dichlorohydrazobenzene 782-74-1 3.65 3.19 0.46

69 1-(N- 90-30-2 3.23 2.74 0.49
Phenylamino)naphthalene

75 Tris(1,3-dichloro-2- 13674-87-8 0.13 1.75 1.62
propyl)phosphate

76 p-Phenylphenol 92-69-3 1.59 1.96 0.37

80 4-Chloro-1-nitro- 118-83-2 1.87 2.03 0.16
2(trifluoromethyl) benzene

82 N-Hexamethylolmelamine 3089-11-0 0.28 0.06 0.22
hexamethylether

83 Disperse Yellow 163 71767-67-4 1.56 1.16 0.40

87 0,0-Dimethyl-S-(N- 60-51-5 -0.26 0.12 0.38
methylcarbamoylmethyl)
phosphorodithioate

89 m-nitrobenzene sulfonic acid 98-47-5 0.70 0.33 0.37

91 Tris(p- 26967-76-0 1.50 2.02 0.52
isopropylphenyl)phosphate

93 1-Amino-8-naphthol-3,6- 90-20-0 0.46 0.45 0.01
disulfonic acid

94 3,3"-Dichloro-5,5"-benzidine 123251-96-7 0.20 0.04 0.16
disulfonic acid

95 Disperse Yellow 64 10319-14-9 1.08 1.80 0.72
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Absolute standardized error vs. Ki for test samples
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Figure 5.2 K; vs. Absolute standardized error plot for the test samples of CAESAR BCF
model A

Figure 5.2 provides with a plot from the novel kNN based AD approach that
tries to compare the observations made in the model’s descriptor space and
the response domain. The test samples are clearly showing a decreasing
pattern from left towards right indicating a lowering prediction error with a
corresponding increase in the number of training thresholds satisfied by the
test samples. This plot also tries to graphically reflect upon the observations
made from the previous table and plot for this model. Samples 33 and 61 for
instance, are associated with reasonably higher prediction error and were
able to satisfy none of the training thresholds indicating them being
unreliably predicted. On the other hand, test sample 14 and 28 were
associated with very low prediction error and satisfied maximum training
thresholds. Thus, higher structural similarity resulted in better predictions as
evident from this plot.

5.3.3 AD evaluation for CAESAR BCF model B

Table 5.5 provides with an overview of the results derived implementing various
classical and novel AD approaches on CAESAR BCF model B.
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Table 5.5 An overview of the results for AD evaluation on CAESAR BCF model B (Test set:
95 samples)

AD method Samples Q° List of samples outside AD
outside
AD (%)

Bounding Box 0 0.774 None

PCA Bounding Box (First 2 PCs) 0 0.774 None

Convex Hull 0 0.774 None

Leverage approach 32 0.767 4350091

Centroid dist. (Euclidean, 95 percentile) 32 0.767 435091

Centroid dist. (Manhattan, 95 percentile) 5.3 0.764 3637 435091

Centroid dist. (Mahalanobis, 95 32 0.767 435091

percentile)

kNN general thr. (Euclidean, k=5) 1.1 0.772 82

kNN general thr. (Manhattan, k=5) 1.1 0.772 82

kNN general thr. (Mahalanobis, k=5) 4.2 0.783 7582 8794

Gaussian kernel: fixed 13.7 0.778 3333440435074 7582838791
94

Gaussian kernel: optimized 29.5 0.787 32133344043 444647485052
5456 617374758081 82838788
91939495

Gaussian kernel: variable 22.1 0.777 33334404344 474850737475
80 81 8283 8788919394

Adaptive kernel 2.1 0.769 43 82

Epanechnikov kernel 32 0.769 334382

kNN kernel (k=8) 42 0.767 33404382

Triangular kernel 10.5 0.786 333345074758283879%4

Novel kNN approach (Euclidean, k=8) 32 0.785 337582

Novel kNN approach (Manhattan, k=8) 7.4 0.779 33407475 82 83 87

Novel kNN approach (Mahalanobis, k=38) 6.3 0.782 337475828387

Novel LCMD approach 5.3 0.764 4350828391

The range and geometric-based approaches retained all the test samples
inside the model’s AD. All other set of approaches associated some test
samples being unreliably predicted, however, no major impacts were
observed on the resulting Q. This includes both the novel proposed AD
approaches. This parameter varied slightly even after excluding several other
test samples as obvious in the case of Gaussian kernel based approaches.
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Number of times considered outside AD

824333507587 9183744094 3 344447 4873 80 8188 93 2136 37
Test samples

Figure 5.3 Consensus test samples excluded from the AD of CAESAR BCF model B

Figure 5.3 provides with an overview of the consensus test samples being
excluded from the model’s AD implementing different approaches. Samples
43 and 82 (Trichlorometane and N-hexamethylolmelamine hexamethylether)
were associated with the maximum frequency, thus indicating them being
excluded from the AD using several different algorithms independent of each
other. Several other test samples that were excluded by only one AD
approach were not highlighted in the figure, however, Table 5.6 provides
with some useful information about all the test samples excluded by different
AD approaches.
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Table 5.6 An overview of all test samples excluded from the AD of CAESAR model B with
different approaches

Sample Exp. Pred. Abs
IDp Name CAS logBlz?F logBCF .pred.error
3 Pentachlorophenol 87-86-5 2.50 1.75 0.75
21 Cyclohexane 110-82-7 1.92 1.98 0.06
33 Hexachlorobenzene 118-74-1 4.23 3.57 0.66
34 Tetrabromo-2-chlorotoluene 39569-21-6 3.98 2.77 1.21
36 2,3,4,2",5"-Pentachlorobiphenyl 38380-02-8 4.02 4,53 0.51
37 2,3",4,4" 6-Pentachlorobiphenyl 56558-17-9 4.81 4.52 0.29
40 Pentachlorobenzene 608-93-5 3.49 3.48 0.01
43 Trichlorometane 67-66-3 0.93 1.03 0.10
44 1,1,2,2-Tetrachloroethane 79-34-5 0.93 0.91 0.02
1,1,2,2-Tetrachloro-1,2- 053
46 difluoroethane 76-12-0 1.78 1.25 ’
47 Tetrachloroethylene 127-18-4 1.72 0.66 1.06
48 Dibromoneopentylglycol 3296-90-0 -0.04 0.22 0.26
50 Heptachlor 76-44-8 3.95 4.17 0.22
52 1,3,5-Tri-tert-butylbenzene 1460-02-2 4.37 2.65 1.72
Benzene-1,2-dicarboxylic acid bis 030
54 (2-ethylhexyl) ester 117-81-7 1.19 1.49 ’
56 Triethanolamine 102-71-6 0.59 0.28 0.31
61 2,4,6-Trichloroaniline 634-93-5 2.00 1.45 0.55
73 2,2"-Dichlorodiethyl ether 111-44-4 -0.08 0.77 0.85
74 Trichloroacetic acid 76-03-9 -0.15 -0.22 0.07
Tris(1,3-dichloro-2- 161
75 propyl)phosphate 13674-87-8 0.13 1.74 ’
4-Chloro-1-nitro-2(trifluoromethyl) 041
80 benzene 118-83-2 1.87 2.28 ’
81 3-Nitrophthalic acid 603-11-2 0.72 0.26 0.46
N-Hexamethylolmelamine 018
82 hexamethylether 3089-11-0 0.28 0.46 ’
83 Disperse Yellow 163 71767-67-4 1.56 1.07 0.49
0,0-Dimethyl-S-(N-
methylcarbamoylmethyl) 0.60
87 phosphorodithioate 60-51-5 -0.26 0.34
88 2,2-Dichloropropionic acid N/A 0.85 -0.01 0.86
91 Tris(p-isopropylphenyl)phosphate 26967-76-0 1.50 1.25 0.25
1-Amino-8-naphthol-3,6-disulfonic 019
93 acid 90-20-0 0.46 0.65 ’
3,3"-Dichloro-5,5"-benzidine 022
94 disulfonic acid 123251-96-7 0.20 0.42 ’

95 Disperse Yellow 64 10319-14-9 1.08 1.44 0.36
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Absolute standardized error vs. Ki for test samples
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Figure 5.4 : Kj vs. Absolute standardized error plot for the test samples of CAESAR BCF
model B

Figure 5.4 provides with the K; vs. absolute standardized error plot derived
from the novel kNN based AD approach. Several test samples like 30, 32, 57
and 84 were hindering the expected lowering pattern in prediction error with
increase K; values. Such samples indicate being associated with high
predictor error despite of their higher K; values which in theory shouldn’t be
the case. However, this plot tries to reflect the outcome of AD evaluation in
the model’s descriptor space taking into account the model’s response
domain and the observations in these two different spaces may not converge
necessarily.

5.4 Ready biodegradability of chemicals

5.4.1 Model description

OECD principle 1: A defined endpoint
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This set of classification models is aimed at evaluating the persistence of
chemical substances in the environment by predicting their ready
biodegradability. Since the accumulation of persistent chemicals could lead
to hazardous impacts on a longer time scale, REACH regulation requires the
information relevant to the ready biodegradability of chemical substances
that are produced or imported in quantities greater than one ton per year.
Being classification models, their resulting predictions for query chemicals
are either if they are Ready Biodegradable (RB) or not ready biodegradable
(NRB) [39].

OECD principle 2: An unambiguous algorithm

Three QSAR models were developed using the following different
classification modelling techniques to incorporate linear, non-linear and local
models: k Nearest Neighbours (kNN), partial least squares discriminant
analysis (PLSDA) and support vector machines (SVM). Since individual
models can account for different amounts of noise, two consensus models
were developed in order to improve the overall quality in predictions. The
first consensus model allocated the most frequent class predicted for a query
chemical using the above three classification models. On the other hand, the
second consensus model allocated a given query chemical to a class that was
predicted the same with all the three individual models; otherwise no class
was assigned. Model calibration in all the cases was carried out using a data
set of 837 molecules while it was validated on a test set consisting of 218
molecules. Further, the developed models were evaluated on an external
validation test set consisting of 670 molecules. Table 5.7 provides with an
overview of all the molecular descriptors from the DRAGON 6 package used
in developing the three classification models [43]. The descriptor selection
for this set of models was performed using Genetic Algorithm (GA).
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Table 5.7 List of descriptors used to develop the biodegradability models.

Descriptor Description Model
BOI[C-Br] presence/absence of C—Br at topological distance 1 PLSDA
BoO3[C-Cl] presence/absence of C—Cl at topological distance 3 PLSDA
B04[C-Br] presence/absence of C—Br at topological distance 4 PLSDA
C% percentage of C atoms kNN- PLSDA
C-026 R-CX-R SVM
FOI[N-N] frequency of N—N at topological distance 1 kNN
FO2[C-N] frequency of C—N at topological distance 2 SVM
FO3[C-N] frequency of C—N at topological distance 3 kNN
Fo3[C-0] frequency of C—O at topological distance 3 PLSDA
FO4[C-N] frequency of C—N at topological distance 4 kNN-PLSDA
HyWi_B(m)  hyper-Wiener-like index (log function) from Burden matrix PLSDA
weighted by mass
J_Dz(e) Balaban-like index from Barysz matrix weighted by Sanderson kNN
electronegativity
LOC lopping centric index PLSDA
Me mean atomic Sanderson electronegativity (scaled on Carbon PLSDA
atom)
Mi mean first ionization potential (scaled on carbon atom) PLSDA
N-073 Ar2NH/Ar3N/Ar2N-Al/R---N---R PLSDA
nArCOOR number of esters (aromatic) SVM
nArNO2 number of nitro groups (aromatic) PLSDA
nCb- number of substituted benzene C(sp2) kNN-SVM
nCIR number of circuits PLSDA
nCp number of terminal primary C(sp3) kNN
nCrt number of ring tertiary C(sp3) SVM
nCRX3 number of CRX3 PLSDA
nHDon number of donor atoms for H-bonds (N and O) SVM
nHM number of heavy atoms kNN
nN number of nitrogen atoms SVM
nN-N number of N hydrazines PLSDA-SVM
nO number of oxygen atoms kNN-PLSDA
NssssC number of atoms of type ssssC kNN-SVM
nX number of halogen atoms SVM
Psi_i_1d intrinsic state pseudoconnectivity index—type 1d PLSDA
Psi i A intrinsic state pseudoconnectivity index[Itype S average SVM
SdO sum of dO E-states PLSDA
SdssC sum of dssC E-states kNN
SM6_B(m) spectral moment of order 6 from Burden matrix weighted by SVM
mass
SM6_L spectral moment of order 6 from Laplace matrix PLSDA
SpMax_A leading eigenvalue from adjacency matrix (Lovasz—Pelikan PLSDA
index
SpMax_B(m leadin)g eigenvalue from Burden matrix weighted by mass SVM
épMax_L leading eigenvalue from Laplace matrix kNN-PLSDA-SVM
SpPosA_B(p  normalized spectral positive sum from Burden matrix weighted ~PLSDA
) by polarizability
TI2_L second Mohar index from Laplace matrix PLSDA
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OECD principle 3: A defined domain of applicability

The article from where these models were retrieved does not provide with
any direct evaluation of the model’s AD. However, an article focussing
exclusively on evaluating their AD is currently in preparation.

OECD principle 4: Appropriate measures of goodness-of-fit, robustness and
predictivity

Table 5.8 provides with the default model statistical parameters, retaining all
the test samples within the model’s AD. It should be noted that for the
second consensus model the not assigned molecules were not considered to
evaluate the TP and TN.

OECD principle 5: A mechanistic interpretation, if possible

The authors provided following a posteriori mechanistic interpretation to
relate the chosen set of descriptors to the modelled endpoint:

The usefulness of the chosen descriptors was interpreted deriving score and
loading plots from the PCA study on the training set and projecting test set
molecules over the training space. For the PLSDA model, the descriptors
were related to biodegradability directly using the latent variables used for
model development.

kNN model: Descriptors encoding information about the substituted
benzenes and nitrogen (functional group counts based descriptor nCb- and
2D atom pairs based descriptors FO1[N-N], FO4[C-N], and FO3[C-N])
differentiated the NRB from RB molecules based on the presence of cyclic
and nitro groups. nHM indicated the presence of heavy atoms which may be
more relevant to the NRB molecules. Since RB molecules are less branched
than NRB ones, descriptors SdssC, NssssC and nCp were more oriented
towards the NRB molecules indicating that increased branching molecules
could lower the ready biodegradability.
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Table 5.8 Model statistics for the biodegradability models.

k/LVs/
Model Desc ¢ Fitting test set validation set
ER Sn Sp ER Sn Sp ER Sn Sp
kNN 12 6 0.14 0.84 0.89 0.15 0.81 0.9 0.17 0.75 0.91
PLSDA 23 5 0.14 0.88 0.83 0.15 0.83 0.87 0.17 0.80 0.86
SVM 14 5 0.14 0.81 092 0.14 0.82 0.91 0.18 0.74 0.91
consensus
1 41 0.11 0.86 0091 0.13 0.82 0.92 0.17 0.76 0.91
consensus
2 41 0.07 091 095 0.09 0.88 0.94 0.13 0.81 0.94
(19% not assigned) (15% not assigned) (13% not assigned)

Desc: Descriptors used, k&/LVs/c: indicates the optimal parameters, no. of nearest neighbours (k) for kNN,
number of latent variables (LVs) for PLSDA and the cost (c) for SVM. ER: Error Rate, Sn: Sensitivity
indicating correctly predicted non ready biodegradable, Sp: Specificity indicating correctly predicted ready

biodegradable

PLSDA model: Matrix based descriptors contained information about the
molecular branching and based on the significant latent variables used, they
were clearly oriented towards the NRB molecules, which is in agreement
with the findings that lower branching favours ready biodegradation.

The descriptors containing information about cycles, nitrogen and halogens
were oriented towards NRB molecules like for the KNN model. Descriptors
indicating the presence of oxygen further differentiated the RB from NRB
molecules, indeed functional groups with oxygen atoms assist
biodegradation process.

SVM model: Several descriptors encoding information about the molecular
branching, aromatic groups and halogens (including matrix-based
descriptors, constitutional indices and atom-centred fragments) differentiated
the RB from NRB molecules, being more oriented towards the latter ones.
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To better understand the usefulness of matrix-based descriptors towards
ready biodegradability, their encoded information was further explored by
performing OLS regression between these targeted matrix-based descriptors
and DRAGON molecular descriptors. As a result of this analysis, these
matrix-based descriptors were associated with properties like molecular
branching, cyclicity and molecular size which are significant parameters
impacting the biodegradability.

5.4.2 AD evaluation on consensus models

One of the important aspects of considering this case study is to perform the
AD evaluation on consensus models. Since consensus models are mainly
relying on the output derived from the set of primary models (in this case,
kNN, PLSDA and SVM models), following strategy was adopted to deal
with defining the AD of the resulting two consensus models.

The AD of all the three individual models was evaluated like for the other
case studies using all the different classical and novel AD approaches
discussed earlier (though the results are not discussed for these models). For
both the consensus models, a given test sample was considered within its AD
with a given approach only if it was retained inside the AD of all the three
individual models. The decision rule could be interesting since the final
decision to retain or discard a test sample in the AD depends on the output
from three different models-local, linear and non-linear. The decision rule
adopted towards defining the AD resembles the criterion used by the second
model in considering a test sample to be RB or NRB.

Tables 5.9 and 5.10 provide with an overview of the results derived with
different classical and novel AD approaches on first and second consensus
models, respectively. The test samples listed being outside the AD are the
same since the same AD criterion was followed by both the consensus
models. The difference however lies in the model statistical parameters since
the predicted responses for both these models are different. Moreover, there
are some test samples with unassigned class in the case of second consensus
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model. In both the cases, no significant impacts were observed on the
resulting statistical parameters.

In theory, a test sample can only be considered within the consensus model’s
AD provided that it was included within the AD of three individual models
which were based on very diverse algorithms towards model development. If
a test sample falls inside the AD of local, linear and non-linear models, this
further adds to the reliability in considering such test samples within the
model’s AD. However, such strict criterion may also make the defined AD
more restrictive to the test samples. For both the consensus models, none of
the approaches were able to significantly improve the model statistical
parameters retaining reasonable number of test samples within the model’s
AD.

Table 5.9 An overview of the results for AD evaluation on the first consensus model

AD method Samples ER Sn Sp List of samples outside AD
outside
AD (%)
Bounding Box 4.1 0.14 082 091 273130166181 189 192215 217
PCA Bounding Box 0.5 0.13 0.82 092 217
Convex Hull - - - - -
Leverage approach 13.3 0.13 0.84 0.90 21924 2757737476 77 78 80 83

91 94 96 130 134 146 159 164 166
186 189 190 192 200 215 216 217

Centroid dist. (Euclidean, 95 9.2 0.14 0.82 0.91 57 73 74 76 77 78 94 134 159 164

percentile) 166 172 186 190 192 200 202 215
216

Centroid dist. (Manhattan, 8.7 0.14 0.82 091 57737476 77 78 91 94 134 151 152

95 percentile) 159 166 192 200 202 215 216 217

Centroid dist. (Mahalanobis, 10.6 0.13 0.83 0.90 22757737476 77 78 83 91 94 96

95 percentile) 130 134 159 164 166 186 189 192
200 215 217

kNN general thr (Euclidean, 10.1 0.13 0.83 0.90 27 57 73 76 77 91 94 134 147 151

k=5) 152 164 166 186 189 190 192 196
200215216 217

kNN general thr. 8.7 0.14 0.82 0.91 73 76 77 80 91 94 134 147 151 152

(Manhattan, k=5) 166 186 189 190 192 200 215 216
217

kNN general thr. 16.1 0.13 0.84 0.90 22427 5773747576 77 78 80 83

(Mahalanobis, k=5) 90 91 94 130 134 147 151 152 158

159 164 166 173 186 189 190 192
196 200 212 215 216 217
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AD method

Samples
outside
AD (%)

ER

Sn

Sp

List of samples outside AD

Gaussian kernel: fixed

Gaussian kernel: optimized

Gaussian kernel: variable

Adaptive kernel

Epanechnikov kernel

kNN kernel

Triangular kernel

Novel kNN approach
(Euclidean)

Novel kNN approach
(Manhattan)

Novel kNN approach
(Mahalanobis)

Novel LCMD approach

349

88.5

14.7

11.9

20.6

11.9

77.1

11.0

11.9

11.5

0.13

0.00

0.13

0.13

0.14

0.13

0.05

0.13

0.14

0.13

0.14

0.85

1.00

0.84

0.83

0.84

0.84

0.83

0.81

0.83

0.83

0.89

1.00

0.90

0.90

0.89

0.90

1.00

0.90

0.90

0.90

0.90

2571924273047 4851 57 58 62
64 67 69 72 73 75 76 77 78 79 80 82
83 88 8990 91 92 94 96 105 106 110
111 112 113 115 116 119 121 122
124 126 127 130 133 134 135 137
140 141 142 144 146 147 148 149
151 152 153 154 157 158 159 160
161 164 166 168 172 173 174 178

All test samples except 9 14 15 16 17
18 22 41 46 53 74 97 103 108 109
117 128 151 152 153 154 155 156
157 158 167 171 201 202 203 205
206 208 209

242757 73747677 78839194105
134 135 147 151 152 158 159 161
164 166 186 187 189 190 192 196
200 215 216 217

27 57 73 74 75 76 77 78 83 94 105
134 147 151 152 164 166 186 189
190 192 196 200 215 216 217
2242757 73757677 78 80 83 90
91 94 96 110 112 116 130 133 134
135 144 147 151 152 154 158 159
161 164 166 172 173 185 186 187
189 190 192 196 200 215 216 217
2427577374767778839194 134
147 151 152 164 166 186 189 190
192 196 200 215 216 217

All test samples except 9 11 12 13 14
1516 17 18 22 29 33 34 38 39 41 44
46 53 59 60 66 68 74 84 87 97 99 100
102 103 108 109 114 117 128 162
163 165 167 169 170 171 177 183
201 203 205 206 208 209
275773757677 8094 134 152 154
158 161 164 166 173 186 189 190
192200 215216 217

2 57 73 76 77 80 91 94 105 134 135
147 151 152 161 164 166 186 187
189 190 192 200 215 216 217
2277376779091 94 110 134 147
151 152 158 164 166 186 187 189
190 192 200 215 216 217
2275773747677 78 83 91 94 96
130 134 146 159 164 166 186 189
192 200 215 216 217
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Table 5.10 An overview of the results for AD evaluation on the second consensus model

AD method

Samples
outside
AD (%)

ER

Sn

Sp

List of samples outside AD

Bounding Box
PCA Bounding Box
Convex Hull

Leverage approach

Centroid dist. (Euclidean, 95

percentile)

Centroid dist. (Manhattan, 95
percentile)

Centroid dist. (Mahalanobis, 95

percentile)

kNN general thr (Euclidean, k=5)

kNN general thr. (Manhattan, k=5)

kNN general thr. (Mahalanobis, k=5)

Gaussian kernel: fixed

Gaussian kernel: optimized

Gaussian kernel: variable

4.1
0.5

133

9.2

8.7

10.6

10.1

8.7

16.1

34.9

88.5

14.7

0.08
0.08

0.07

0.08

0.08

0.08

0.08

0.08

0.07

0.07

0.00

0.07

0.89
0.90

0.93

0.90

0.90

0.91

0.91

0.90

0.93

0.93

1.00

0.93

0.94
0.94

0.93

0.94

0.94

0.93

0.93

0.93

0.93

0.92

1.00

0.93

2130 166 181 189 192 215 217
217

19 24 27 57 73 74 76 77 78 80 83
91 94 96 130 134 146 159 164 166
186 189 190 192 200 215 216 217

57737476 77 78 94 134 159 164
166 172 186 190 192 200 202 215
216

57 73 74 76 77 78 91 94 134 151
152 159 166 192 200 202 215 216
217

2275773747677 78 83 91 94
96 130 134 159 164 166 186 189
192 200 215 217

27 577376 77 91 94 134 147 151
152 164 166 186 189 190 192 196
200 215 216 217

7376 77 80 91 94 134 147 151 152
166 186 189 190 192 200 215 216
217

22427 5773747576 77 78 80
83 90 91 94 130 134 147 151 152
158 159 164 166 173 186 189 190
192 196 200 212 215 216 217

57192427 3047 48 51 57 58 62
64 67 69 72 737576 77 78 79 80
8283 888990919294 96 105 106
110 111 112 113 115 116 119 121
122 124 126 127 130 133 134 135
137 140 141 142 144 146 147 148
149 151 152 153 154 157 158 159
160 161 164 166 168 172 173 174
178

All test samples except 9 14 15 16
17 18 22 41 46 53 74 97 103 108
109 117 128 151 152 153 154 155
156 157 158 167 171 201 202 203
205 206 208 209

24 275773747677 78 839194
105 134 135 147 151 152 158 159
161 164 166 186 187 189 190 192
196 200 215 216 217
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AD method Test ER Sn Sp List of samples outside AD
outside
AD (%)

Adaptive kernel 11.9 0.08 091 0.93 2757 7374757677 78 83 94 105

134 147 151 152 164 166 186 189
190 192 196 200 215 216 217

Epanechnikov kernel 20.6 0.08 093 092 242757737576 77 78 80 83 90
91 94 96 110 112 116 130 133 134
135 144 147 151 152 154 158 159
161 164 166 172 173 185 186 187
189 190 192 196 200 215 216 217

kNN kernel 11.9 0.07 093 0.93 24 27 57737476 77 78 83 91 94
134 147 151 152 164 166 186 189
190 192 196 200 215 216 217

Triangular kernel 77.1 0.08 095 1.00 Al test samples except 9 11 12 13
14 15 16 17 18 22 29 33 34 38 39
41 44 46 53 59 60 66 68 74 84 87
97 99 100 102 103 108 109 114
117 128 162 163 165 167 169 170
171 177 183 201 203 205 206 208
209

Novel kNN approach (Euclidean) 11.0 0.07 091 0.93 275773757677 8094 134 152
154 158 161 164 166 173 186 189
190 192 200 215 216 217

Novel kNN approach (Manhattan) 11.9 0.09 089 093 57737677809194105134135
147 151 152 161 164 166 186 187
189 190 192 200 215 216 217

Novel kNN approach (Mahalanobis) 11.5 0.08 091 093 27737677909194 110134 147
151152 158 164 166 186 187 189
190 192 200 215 216 217

Novel LCMD approach 11.5 0.08 091 093 22757737476777883919496
130 134 146 159 164 166 186 189
192 200 215 216 217
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25

Number of times considered outside the AD

217 73 192 94 166 134 189 164 200 215 190 27 152 2
Test samples

Figure 5.5 Consensus test samples excluded from the AD of consensus models

Figure 5.5 provides with an overview of the most commonly excluded test
samples from the AD of the both consensus models.

Table 5.11 provides with an overview of all the test samples considered
outside the AD with different approaches. It enlists almost entire test set
since with approaches like fixed and optimized gaussian kernel as well as
triangular kernel, a huge number of test samples were considered as outside
the AD. For each of the test sample listed in this table, its experimental
response as well as the predicted class from both the consensus models were
provided. Several of the test samples listed in Figure 5.5 were predicted
reliably even if they were rendered as unreliable in the model’s descriptor
space being excluded from the model’s AD with several diverse approaches.
This resembles the observation made for the regression models dealt as case
studies earlier in this thesis work. This implies that the results derived in a
model’s descriptor space may not necessarily reflect the results derived in
the response domain of that model.
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Table 5.11 An overview of all the test samples excluded from the AD of both consensus models with

different approaches
Sample Name CAS Exp.class consensus  consensus
ID 1 2
1 n-heptane 142-82-5 RB RB RB
2 ethylene oxide 75-21-8 RB RB RB
3 Toluene 108-88-3 RB RB RB
4 di-n-butylamine 111-92-2 RB RB RB
5 3,7-dimethyl-1,6-octadien-3-ol 78-70-6 RB NRB NRB
6 3,6-dioxadecan-1-ol 112-34-5 RB RB RB
7 n-butyraldehyde 123-72-8 RB RB RB
not
8 4-hydroxy-4-methyl-2-pentanone 123-42-2 RB NRB assigned
10 bis(2-ethylhexyl) fumarate 141-02-6 RB RB RB
11 12-hydroxyoctadecanoic acid 106-14-9 RB RB RB
12 Nonadecaneonitrile 28623-46-3 RB RB RB
13 (dichloromethyl)benzene 98-87-3 RB NRB NRB
19 bis(2-hydroxyethyl) terephthalate 959-26-2 RB RB RB
20  4-hydroxybenzonitrile 767-00-0 RB NRB not
assigned
21 p-toluenesulfonic acid 104-15-4 RB RB not
assigned
not
23 methyl 3-oxo-2-pentylcyclopentylacetate 24851-98-7 RB RB assigned
24 Imidazole 288-32-4 RB NRB NRB
25 3-hydroxypyridine 109-00-2 RB RB RB
26 1-hexene 592-41-6 RB RB RB
27 isopropyl bromide 75-26-3 RB NRB NRB
28 n-butylamine 109-73-9 RB RB RB
29 hexadecan-1-ol 36653-82-4 RB RB RB
30 2-methoxyethanol 109-86-4 RB RB RB
31 propyl acetate 109-60-4 RB RB RB
32 13-docosenoamide 112-84-5 RB RB not
assigned
33 adipic acid 124-04-9 RB RB RB
34 2-methoxyethyl acrylate 3121-61-7 RB RB RB
35 2-hydroxypropyl methacrylate 923-26-2 RB RB RB
36 2,4-hexadienic acid (synonym:sorbic acid) 110-44-1 RB RB RB
37 2-methylenesuccinic acid 97-65-4 RB RB RB
38 butyl acetoacetate 591-60-6 RB RB RB
39 Aniline 62-53-3 RB NRB not
assigned
40 benzyl methacrylate 2495-37-6 RB RB RB
42 stylene oxide 96-09-3 RB NRB not
assigned
43 benzoylaminoacetic acid 495-69-2 RB RB RB
44 2-(methylamino)benzoic acid 119-68-6 RB RB not
assigned
45 alpha-terpineol 98-55-5 RB NRB NRB
47 3—acetyl—6—methyl—2,4(ﬁ.5H)—pyrandlone 520-45-6 RB RB RB
(synonym:dehydroacetic acid)
48 Xylitol 87-99-0 RB RB RB
49 Benzoin 119-53-9 RB RB not
assigned
50 beta-alanine 107-95-9 RB RB RB
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Sample consensus  consensus

D Name CAS Exp.class 1 2
51 1-chlorooctane 111-85-3 RB RB not
assigned
52 2-ethoxyethanol 110-80-5 RB RB RB
54 methyl dodecanoate 111-82-0 RB RB RB
55 succinic acid 110-15-6 RB RB RB
56 2-hydroxyethyl acrylate 818-61-1 RB RB RB
. L not
57 2-hydroxy-1,2,3-propanetricarboxylic acid 77-92-9 RB RB assigned
58 DL-tartaric acid 133-37-9 RB RB RB
59 sec-butyl alcohol 78-92-2 RB RB RB
60 terephthalic acid 100-21-0 RB RB RB
61 Phenylacetonitrile 140-29-4 RB RB RB
. not
62 1-methyl-4-(1-methylvinyl)cyclohexene 138-86-3 RB NRB assigned
63 cyclohexyl methacrylate 101-43-9 RB RB RB
64 2-(methylamino)ethanol 109-83-1 RB RB RB
65 1,1'-iminodi-2-propanol 110-97-4 RB RB RB
66 2-[2-(2-methoxyethoxy)ethoxy]ethanol 112-35-6 RB RB RB
67 chloroacetic acid 79-11-8 RB RB RB
68 dioctyl phthalate(synonym:di-n-octyl phthalate) 117-84-0 RB RB RB
69 dicyclohexyl benzene-1,2-dicarboxylate 84-61-7 RB NRB not
assigned
70 beta-naphthol 135-19-3 RB NRB NRB
71 Pyridine 110-86-1 RB NRB not
assigned
72 sorbitan monolaurate 1338-39-2 RB RB RB
73 Perfluoro(1,2-dimethylcyclohexane) 306-98-9 NRB NRB NRB
75 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane 50-29-3 NRB NRB NRB
(synonym:DDT)
76 2-(3,5-di-tert-butyl-2-hydroxyphenyl)benzotriazole 3846-71-7 NRB NRB NRB
77 2,4-di-tert-butyl-6-(5-chloro-2H-1,2,3-benzotriazol-2- 3864-99-1 NRB NRB NRB
yl)phenol
mixture of 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-
hexahydro-4,7-methano-1H-indene, 1,4,5,6,7,8,8-
78 heptachloro-3a,4,7,7a-tetrahydro-4,7-methano- 1 H-indene 76-44-8 NRB NRB NRB
and their analogue compounds
79 1(a),2(a),3.(a),4(e),5(e),6(e)—hexachlorocyclohexane 608-73-1 NRB NRB NRB
(synonym:gamma-BHC)
80 trichloronitromethane (synonym:chloropicrine ) 76-06-2 NRB NRB NRB
81 N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamine) 3033-62-3 NRB NRB r.lot
assigned
82 1,3-dimethylurea 96-31-1 NRB RB not
assigned
83 2,2-Dibromo-2-cyanoacetamide 10222-01-2 NRB NRB NRB
84 2-Chloro-4-nitroaniline 121-87-9 NRB NRB NRB
85 4-nitro-o-anisidine 97-52-9 NRB NRB NRB
86 2-chloro-1,4-dimethoxybenzene 2100-42-7 NRB NRB not
assigned
87 3-Methyl-4-(methylsulfanyl)phenol 3120-74-9 NRB NRB NRB
88 2-amino-5-nitrobenzonitrile 17420-30-3 NRB NRB NRB
not
89 1,2-difluorobenzene 367-11-3 NRB NRB assigned
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SairIl)ple Name CAS Exp.class consinsus cons;nsus
90 N,N,N',N -"l."etr.a@s(0x1ran-2-ylmethyl)-4,4 - 28768-32-3 NRB NRB NRB
methylenedianiline
1,3,5-tris(epoxypropyl)triazinane-2,4,6-trione
91 (synonym:1,3,5-tris(epoxypropyl)-1,3,5-triazine- 2451-62-9 NRB NRB NRB
2,4,6(1H,3H,5H)-trione)
9-methoxy-7H-furo(3,2-g)chromen-7-one (synonym:9- not
92 methoxy-7H-furo(3,2-g)[1]benzopyran-7-one or 298-81-7 NRB NRB assioned
methoxalen ) g
93 3(or4)-methyl-4-cyclohexen-1,2-dicarboxylic anhydride 5333-84-6 NRB NRB as S?;tle d
94 1,1,11-trihydroperfluoroundecanol 307-70-0 NRB NRB NRB
95 2-Ethylhexyl hydrogen (2-ethylhexyl)phosphonate 14802-03-0 NRB NRB NRB
96 dibutyltin oxide 818-08-6 NRB NRB not
assigned
98 (2-chloroethyl)benzene 622-24-2 NRB NRB NRB
99 o-chlorotoluene 95-49-8 NRB NRB NRB
100 p-chlorotoluene 106-43-4 NRB NRB NRB
101 1-chloro-4-isopropenylbenzene 1712-70-5 NRB NRB NRB
102 N,N-diethylaniline 91-66-7 NRB NRB NRB
104 2.,4,6-trichloroaniline 634-93-5 NRB NRB NRB
105 N-nitrosodiphenylamine 86-30-6 NRB NRB NRB
106 Dinonylphenol 1323-65-5 NRB NRB NRB
107 2,4-dinitrophenol 51-28-5 NRB NRB NRB
110 4-bromo-2,5-dichlorophenol 1940-42-7 NRB NRB NRB
111 dibromocresyl glycidyl ether 30171-80-3 NRB NRB NRB
112 1,4-bis(benzoyloxyimino)-2,5-cyclohexadiene 120-52-5 NRB NRB NRB
113 bis(alpha,alpha-dimethylbenzyl) peroxide 80-43-3 NRB NRB NRB
114 4-vinyl-1-cyclohexene 100-40-3 NRB NRB NRB
115 Menthol 1490-04-6 NRB NRB not
assigned
116 tris(dimethylphenyl) phosphate 25155-23-1 NRB NRB NRB
118 4-(1-methyl-1-phenylethyl)phenol 599-64-4 NRB NRB NRB
119 1-chloronaphthalene 90-13-1 NRB NRB NRB
120 1-methoxynaphthalene 2216-69-5 NRB NRB not
assigned
121 2-tert-butyl-9,10-anthraquinone 84-47-9 NRB NRB NRB
122 2-chloroanthraquinone 131-09-9 NRB NRB NRB
123 2-naphthalenethiol 91-60-1 NRB NRB NRB
124 Carbazole 86-74-8 NRB NRB NRB
125 diphenylmethyl 2-chloroethyl ether 32669-06-0 NRB NRB NRB
126 5-chloro-2-(2,4-dichlorophenoxy)phenol 3380-34-5 NRB NRB NRB
127 bis(1-methyl-2-chloroethyl) ether 108-60-1 NRB NRB NRB
129 N,N-diethyl-m-toluamide 134-62-3 NRB NRB NRB
130 7TH-benzo[d,e]anthracen-7-one (synonym:benzanthrone) 82-05-3 NRB NRB NRB
131 12-dodecanelactam 947-04-6 NRB RB not
assigned
132 Benzothiazole 95-16-9 NRB NRB NRB
133 Dichloropropane 78-87-5 NRB NRB NRB
134 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10- 678-39-7 NRB NRB NRB
heptadecafluorodecan-1-ol
135 1,1-dichloro-N-[(dimethylamino)sulfonyl]-1-fluoro-N- 1085-98-9 NRB NRB NRB

phenylmethanesulfenamide
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Sample Name CAS Exp.class consensus  consensus
ID 1 2
136 Acenaphthylene 208-96-8 NRB NRB NRB
137 Chlorotriphenylmethane 76-83-5 NRB NRB NRB
138 Triethanolamine 102-71-6 NRB RB not
assigned
139 ethyl carbamate 51-79-6 NRB RB RB
140 I())},l()Os—;l}llr;tzthyl S-(N-methylcarbamoylmethyl) dithio 60-51-5 NRB NRB NRB
141 N,N-bis(octylphenyl)amine 26603-23-6 NRB NRB NRB
142 p.p'-dioctyldiphenylamine 101-67-7 NRB NRB NRB
143 o-toluenesulfonamide 88-19-7 NRB NRB NRB
144 tri-p-cumenyl phosphate 26967-76-0 NRB NRB NRB
145 Benzenesulfonamide 98-10-2 NRB NRB NRB
146 S—methylbicyclo[Z.Z.1]hept—S—ene—2,3—dicarb0xylic 25134-21-8 NRB NRB NRB
anhydride
147 1-(2,5-dichloro-4-sulfophenyl)-3-methyl-5-pyrazolone 84-57-1 NRB NRB NRB
148 2-mercaptoimidazoline 96-45-7 NRB NRB NRB
149 pyridine-2,5-dicarboxylic acid 100-26-5 NRB RB RB
150 tetrahydro-1,4-oxazine 110-91-8 NRB RB RB
151 1,3,5-tris(2-hydroxyethyl)isocyanuric acid 839-90-7 NRB NRB NRB
152 4-anilino-3-nitrobenzenesulphonanilide 5124-25-4 NRB NRB NRB
153 2-isopropyl-6-methyl-4-pyrimidinol 2814-20-2 NRB NRB NRB
154 13-dichloropropene 542-75-6 NRB NRB not
assigned
155 3-methoxypropylamine 5332-73-0 NRB RB RB
156 N,N-dimethylacrylamide 07/03/2680 NRB RB RB
157 3,3-iminodipropaneonitrile 111-94-4 NRB NRB not
assigned
158 tetramethylthiuram disulphide 137-26-8 NRB NRB NRB
159 tris(1,3-dichloro-2-propyl) phosphate 13674-87-8 NRB NRB NRB
160 1-chloro-2,3-epoxy-2-methylpropane 598-09-4 NRB NRB NRB
161 1,1',1",1"-(ethylenedinitrilo)tetrakis(propan-2-ol) 102-60-3 NRB NRB NRB
162 N-methylaniline 100-61-8 NRB NRB NRB
163 N-methylacetanilide 579-10-2 NRB NRB NRB
164 N,N'-diphenyl-p-phenylenediamine 74-31-7 NRB NRB NRB
165  N,N-dimethylbenzylamine 103-83-3 NRB NRB not
assigned
166 1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene 81-15-2 NRB NRB NRB
168 2,4-dichlorophenyl 4'nitrophenyl ether 1836-75-5 NRB NRB NRB
170 2-nitro-4-methoxyaniline 96-96-8 NRB NRB NRB
172 bis[1-(tert-butylperoxy)- 1-methylethyl]benzene 25155-25-3 NRB NRB NRB
173 2,6,6-trimethylbicyclo[3.1.1]heptyl-2-hydroperoxide 5405-84-5 NRB NRB NRB
174 3,3,5-trimethylcyclohexanone 873-94-9 NRB NRB NRB
175 Terphenyl 26140-60-3 NRB NRB NRB
176 1-methylnaphthalene 90-12-0 NRB NRB NRB
177 4,4'-methylenediphenol 620-92-8 NRB NRB NRB
178  2-[4-(diethylamino)-2-hydroxybenzoyl]benzoic acid 5809-23-4 NRB NRB assri‘;;e q
179 isobutyl 2-naphthyl ether 2173-57-1 NRB NRB NRB
180 2-Aminonaphthalene-1,5-disulfonic acid 117-62-4 NRB NRB NRB
181 decahydronaphthalene(mixture of cis-form and trans- 91-17-8 NRB NRB NRB

form)
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5. Case studies

Sample Name CAS Exp.class consensus  consensus
ID 1 2
182 (Tricyclo[5.2.1.0(2,6)]decane-4,8-diyl)dimethanol 26896-48-0 NRB NRB NRB
183 Anthracene 120-12-7 NRB NRB NRB
184 2-aminoanthraquinone 117-79-3 NRB NRB NRB
185 1,4-Bis(isopropylamino)-9,10-anthraquinone 14233-37-5 NRB NRB NRB
186 1H-1,2,3-benzotriazole 95-14-7 NRB NRB NRB
5,5-diphenylImidazolidine-2,4-dione (synonym:5,5-
187 diphenyl-2,4-Imidazolidinedione ) S7-41-0 NRB NRB NRB
188 Thioacetamide 62-55-5 NRB NRB not
assigned
189 1,1,2,2-tetrabromoethane 79-27-6 NRB NRB NRB
190 2,2-dichloro-1,1,1-trifluoroethane 306-83-2 NRB NRB NRB
191 3,4-dichloro-1-butene 760-23-6 NRB NRB NRB
192 perfluoro(tributylamine) 311-89-7 NRB NRB NRB
193 2.2-dichlorodiethyl ether 111-44-4 NRB NRB not
assigned
194 2-(isopropoxy)ethanol 109-59-1 NRB RB RB
195 3,5,5-trimethylhexanal 5435-64-3 NRB NRB NRB
196 Trichloroacetaldehyde 75-87-6 NRB NRB NRB
197  Docosanamide 3061-75-4 NRB RB not
assigned
198 dimethyl phosphonate 868-85-9 NRB RB RB
199 tri-n-pentyl phosphate 2528-38-3 NRB NRB NRB
200 Perfluorooctanoic acid 335-67-1 NRB NRB NRB
202 Pentabromotoluene 87-83-2 NRB NRB NRB
204 4'-aminoacetanilide 122-80-5 NRB NRB NRB
207 6-tert-butyl-2,4-xylenol 1879-09-0 NRB NRB NRB
209  4-(methylthio)phenol 1073-72-9 NRB NRB not
assigned
210 2-methyl-3-(4-tert-butylphenyl)propionaldehyde 80-54-6 NRB NRB NRB
211 4,6-dinitro-o-cresol 534-52-1 NRB NRB NRB
212 0,0-diethyl-o-(alpha-cyanobenzylideneamino)thio 14816-18-3 NRB NRB NRB
phosphate
213 dimethyl 2,6-naphthalenedicarboxylate 840-65-3 NRB RB not
assigned
214 2,2,6,6-Tetramethylpiperidin-4-on 826-36-8 NRB NRB NRB
215 2,.2 ,2"-(2,4,6-trioxo-1,3,5-triazinane-1,3,5-triyl)triethyl 40220-08-4 NRB NRB NRB
triacrylate
2-{N-(2-cyanoethyl)-N-[4-(4-
216 nitrophenylazo)phenyl]amino }ethyl benzoate 40690-89-9 NRB NRB NRB
217 iIsll)orophthalocyanmatocopper(H)(synonym: pygmentblue- 12239-87-1 NRB NRB NRB
218 polychlorobiphenyl(number of chlorine is 2-10) 25512-42-9 NRB NRB NRB
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General conclusions and future prospects

It is crucial to know the limitations of QSAR models for reliable predictions
before they can be applied on a diverse set of test molecules. The predictive
ability of QSARs is restricted in their structural and response domain which
indicates that only those test samples that are structurally similar to the
training set can be given as input to such trained models. With growing
awareness about the use of QSARSs, more sophisticated algorithms have been
proposed from time to time. Availability of such state-of-the-art approaches
has allowed QSAR modellers to overcome several prevailing issues in
efficient and faster ways. In theory, a QSAR model can be developed based
on one of the several available model development algorithms, however its
applicability is always restricted since a limited pool of structural diversity is
taken into account while developing such predictive models. Thus,
addressing the AD of such powerful yet restrictive models can be a useful
way to guide the users and keeping them from making predictions which
could be unreliable due to extrapolation.

Several classical ways of addressing the AD of QSAR models were
introduced and an attempt to better explore their features was made
considering simulated models as well as published models from the
literature. All of these classical approaches were able to partially overcome
some of the prevailing issues in defining the model’s AD but simultaneously,
were associated with several other drawbacks. Whether it comes to
inefficiency with data complexity or issues in defining an interpolation space
sufficiently restricting it to reliable predictions, all the approaches had their
own salient features accompanied by some disappointing drawbacks most of
the times.

The range-based approaches may be the simplest, however PCA bounding
box was associated with the most positive impact on model statistics in case
of CAESAR model A by excluding just two test molecules outside the
model’s AD. On the other hand, advanced kernel approaches like optimized
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gaussian kernel considered a giant portion of the test set to be excluded from
the model’s AD, in some cases without any noticeable impact on the model
statistics. Thus, being simple or advanced may not restrict the application of
such approaches.

Two novel approaches were introduced and their underlying algorithms were
discussed. One of them defined the interpolation space relying heavily on an
opted k value while the other applied the salient features of Locally-centred
Mahalanobis distances to identify test samples beyond the scope of a model.
Both the approaches were quite diverse but their results converged in several
cases with each other as well as with those derived for other classical
approaches, indicating the presence of several consensus test samples to be
excluded from the model’s AD. Both the discussed approaches were quite
efficient even in higher dimensions, the defined interpolation space was
reasonably restricted and the excluded test samples in several cases were
associated with higher absolute standardized errors indicating that the results
derived in the model’s descriptor space can converge to the observations
made in the model’s response domain.

There is still a lot to explore within and beyond the scope of this thesis work.
Development of efficient AD strategies to deal with consensus models could
be one of them. Such models are interesting since they don’t exist on their
own and their predictions are completely reliable on the output of several
other models. In the case of biodegradability models, the resulting error rate
reduced reasonably implementing consensus models. Usually, with classical
and new AD approaches dealt in this thesis, the final output simply indicated
if the test sample is inside or outside the model’s AD. There can be several
test samples that may be structurally similar but not to a sufficient extent.
The predictions derived for such test samples may not be completely
meaningless. So to deal with such issues, in future some approaches could be
developed quantifying the reliability in predictions rather than simply
deciding to include or exclude a prediction. It could be also interesting to see
if combining the AD output from several approaches could help overcoming
their prevailing drawbacks and allow a better reliability in AD assessment.
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