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The ECO project 

This thesis was carried out in the framework of the Environmental ChemOinformatics project (ECO) which is 
a Marie Curie Initial Training Network, Funded by the European Commission under FP7 - People Program. 
The project started on 01/10/2009 and planned to end on the 30/09/2013 [1]. 

The aim of the Marie Curie Initial Training Networks (ITN) is to enhance the career of young 
researchers in Europe. The ECO-ITN project aimed at training the fellows in the field of environmental 
Chemoinformatics and to contribute to the implementation of the REACH (Registration, Evaluation, 
Authorization and Restriction of Chemicals) EU regulation. The primary objective of this ITN was to 
contribute to the education of environmental chemo-informaticians in both environmental sciences and 
computational in-silico methods. The fellows of the network were then expected to apply their knowledge for 
the implementation of REACH in particular with respect to the replacement, refinement and reduction of 
animal tests by alternative (in-silico and in-vitro) methods. 

The project involved seven academic institutions from five EU countries (Germany, The Netherlands, 
Spain, Sweden and Italy). 

The expertise of the ECO partners consists of both experimental and computational chemistry including 
traditional analytical techniques, modern bio-screening methods, molecular mechanics, semi-empirical and ab-
initio quantum chemical calculations, in addition to the commonly used Chemoinformatic and Chemometric 
techniques. During the project, several endpoints of interest for REACH were evaluated by means of both 
experimental and computational approaches. Studies on physico-chemical properties, toxicological and complex 
problems of metabolism and biodegradation were carried out. Properties of complex mixtures, fate modeling as 
well as exposure assessment of nanomaterials were also addressed. 

Thesis goals and structure  

The main goal of this thesis was to contribute in filling the lack of knowledge about chemicals for regulatory 
reasons of specific endpoints of interest to the European legislation REACH. The study was focused on 
specific molecular properties related to biodegradation and environmental fate of chemicals. Methods in 
agreement with the scope of REACH, in avoiding animal testing, such as QSAR modeling were developed in 
order to predict the endpoints of interest. A particular attention was paid to molecular descriptors and their 
relationships to the modeled endpoints. 
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The thesis was structured in three parts. In the first part, a general introduction about Persistent Organic 
Pollutants (POPs), their physicochemical properties, pathways to the environment and their acute effects on 
humans and wild life is given. The REACH legislation is then introduced, as well as the role of QSARs as a tool 
of trust to provide the missing information about the chemical substances with the desired reliability. 

In the second part of the thesis, the different steps required for QSAR modeling and the related methods 
used in this study are introduced. Since the predictions of a QSAR model are influenced by the experimental 
values used as response to be predicted, it is fundamental to filter the available information and ensure a high 
quality initial dataset. Methods and algorithms used for this purpose are explained. Then, classical and recent 
advances in variable selection methods are elucidated, since the selection of a proper set of molecular 
descriptors is usually an important step for QSAR modeling. Once the models were built using the suitable 
regression/classification methods, it had to be validated and its accuracy measured then its domain of 
applicability defined. 

The third part of the thesis showed how the previously defined methods have been used in order to 
build and validate the QSAR models. It presented the preliminary results of the conducted studies and 
summaries of the published articles. The selected endpoints of interest to the project were the octanol-water 
partition coefficient, bioaccumulation factors and the ready biodegradability of chemicals. The obtained results 
were evaluated in comparison with the literature and the selected molecular descriptors were discussed in 
relation to the studied endpoints. In addition to the modeling results, a comparison study on different 
applicability domain approaches was carried out and a study on the activity cliffs in the QSAR datasets was 
introduced and the first obtained results are discussed. 
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1. POPs and pathways to the environment 
 

 

 

 

The rapid technological and industrial development during the last decades aimed to increase welfare in most 
parts of the globe. However, it has also led to side impacts on human health and the environment. That was 
due to the fact that chemicals production grows roughly in line with the economies especially in the developed 
countries, releasing toxic substances to the environment. From the several hundreds of million tons of 
chemicals produced every year, Europe has by far the largest part accounting for 38% of the total [2]. About 
2% of Europe’s GDP and 7% of its employment are provided by chemical industry. The 33% of world-wide 
chemicals production are detained by western Europe, of which Germany provides 26%, France 19%, while 
UK and Italy 12% each [3]. 

Since hundreds of new substances are marketed each year, the total number of chemicals available on the 
market is possibly exceeding the 100,000 chemicals that were registered in the European Inventory of Existing 
Commercial Chemical Substances (EINECS) in 1981 [4]. The rising quantities and variety of substances 
released in the environment increase the potential damage to humans and biota. However, about 75% of these 
substances are associated with insufficient toxicity and eco-toxicity data [4].  

Potentially dangerous marketed chemicals were developed and used for different applications, such as 
polychlorinated biphenyls (PCBs) as insulating fluids in electrical equipment, hexachlorobenzene (HCB) to 
protect crops and wood from fungi, and polybrominated diphenyl ethers (PBDEs) to reduce the risk of fires. 
Such substances are often associated with high degree of halogenations and turned out to be persistent in the 
environment as well as toxic for living organisms. They are called persistent organic pollutants (POPs). 

Evidence of POP toxicity has been mounted by associating them with chronic and acute effects deriving 
from long term exposure. In addition, POPs can also cause cancer, allergies, diseases of the immune system, 
damage to nervous systems, developmental disorders, reproductive disorders as well as damage to wildlife [5–
7]. 

Rapid progress is being made to reduce the releases of POPs. Also, the production of such substances is 
being gradually phased out by installing alternative industrial processes and cleaning equipment. However, 
POPs continue to pose risk to the environment long periods after their production and use because of their 
slow degradation. In fact, due to their persistency, these chemicals were also detected in different areas far from 
their original site of production [8,9]. 

To reduce the risks associated with POPs, an agreement has been adopted by the European countries 
under the Convention on Long-Range Trans-boundary Air Pollution at the fourth European conference of 
environment in June 1998 (Aarhus, Denmark). Soon after in Montreal, the global community started 
negotiations about a worldwide treaty for safety from chemicals which can be released in one part of the globe 
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and distributed in vast geographical areas. In 2001, the Stockholm convention on POPs was adopted and 
entered into force in 2004 [10,11]. 

In the framework of the European Commission’s stock-taking legislative instruments to govern chemical 
substances, risk assessment is used to identify potential harm caused by different exposure levels. Further 
knowledge about these toxic chemicals and their pathways to the environment is needed to fill the huge data 
gaps and prevent their toxicity effects. 

1.1. General properties of POPs 

The concept of POP is associated with the Stockholm Convention (SC), the global treaty developed under the 
United Nation Environmental Program [12]. The SC intent was to identify the chemicals which have to be 
reduced or eliminated from the intentional/unintentional production and use chain. The three properties 
typically used to identify POPs are persistency, bioaccumulating potential and toxicity (PBT) [13,14]. Initially, 
the set of POPs consisted of twelve chlorinated chemicals, called “the dirty dozen”, fulfilling the PBT and long 
range environmental transport criteria. Later in 2009, the list was updated by adding nine substances including 
few polybrominated diphenyl ethers (PBDEs) [11]. 

POPs are substances that resist degradation in the environment and poorly dissolve in water 
(hydrophobic). Such compounds often have a carbon backbone with halogen substituents, for instance, 
bromine for PBDEs and chloride for PCBs. POPs with the same backbone structure but different halogen 
numbers and positioning are called congeners. Usually, congeners are associated with different physicochemical 
properties that are likely affecting their fate and transport in the environment [10,15]. 

POPs tend to partition to organic matter in soil and sediments or particles in suspension in water, while 
in biota these compounds accumulate in lipids. Their solubility is known to be similar in lipids while it exhibits 
large variations in water. Therefore, one of their major physicochemical differences can be expressed in terms 
of hydrophobicity [16]. The most common measurements of hydrophobicity is the octanol-water partition 
coefficient expressed in log values (log KOW, log POW or log P) and calculated by the ratio between the 
concentration in water and 1-octanol at equilibrium [17]. Their hydrophobicity degree was demonstrated to be 
correlated with the number of halogens [17–19].  

Their long range atmospheric transport ability is due to their volatility allowing them to have repeated 
evaporation and deposition cycles [20]. They can also be attached to particles that can be transported for long 
distances in air and water [21]. 

The persistency of a chemical do not depends only on its physicochemical properties, but also on the 
environmental conditions including the types of microbes living in the sediments and the concentration of 
hydroxyl radicals in the atmosphere [16].  

Even if anaerobic dehalogenation is a possible way of degradation, POPs half life is very long and can 
reach, in the case of PCDD/Fs, several decades to centuries [22–24]. The hydrophobic property in addition to 
persistency, enable a POP to bioaccumulate and reach high concentrations in biota [14]. 

Bioaccumulation and bioconcentration factors (BAF and BCF, respectively) are two important 
measurements for the accumulation of chemicals in organisms. These factors are calculated as by the ratio 
between the concentrations in the organism and the surrounding media such as water or sediments [25]. BAF 
takes in consideration all uptake routes, including respiratory, dermal and gastrointestinal systems. While for 
BCF calculation, only the passive ways such as respiratory and dermal system are considered [25]. Due to their 
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accumulating effect, the acute toxicity of the POPs is mainly manifested in the top predators of the food chain 
and particularly in fish-eating organisms [26,27]. 

1.2. Pathways to the environment  

Chemical substances usually find their way into the environment via industrial waste and emissions, agricultural 
production and consumer uses. Once in the environment, they can interact with the hosting media to break 
down into other compounds with different properties or persist for long periods. For effective risk assessment 
of chemicals, it is essential to track their environmental fate and their exposure implications from manufacture 
to marketing and use. For each chemical compound, transport through air and water as well as its deposition 
into soil and sediments should be investigated. Multimedia fate models are also used to estimate the potential 
exposure to chemicals by assessing the inputs and outputs in a given geographical region [16].  

Air is likely to be the main way most volatile POPs travel through. Due to the “grasshopper” effect, 
substances released in one part of the world can be transported to very far regions. This fact explains the origin 
of the POPs found in the Arctic or on high mountains [28].  

Since water covers about 70% of the Earth’s surface, it is highly probable that POPs are transported 
attached to particles and organic matter in suspension and, subsequently, end up to deposit in sediments [29]. 
However, the highest concentration of POPs in sediments is always detected close to the original sources [30–
33]. 

Even with decreased emissions from the sources, due to their persistency, POPs can continuously 
contaminate the aquatic environment by dispersion to biota living in the sediments [34,35]. 

Once in living organisms, these pollutants can increase concentration in tissues of animals and 
accumulate at the highest levels of the food chain including humans. This process is called biomagnification. 
Thus, the complexity of the multiple exposure modes of these substances requires more knowledge about all 
chemicals to be marketed. To avoid the dangerous effects of direct contact or long term accumulation, only 
safe chemicals should be authorized to be manufactured. 
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2. Regulation of chemicals in Europe 
 

 

 

 

The regulation process of chemicals in Europe started in 1976 and it restricted the marketing or use of only few 
hundreds of substances classified as carcinogenic, mutagenic or toxic to reproduction [36]. 

For a more safe manufacture and use of chemicals available in the European market, the implementation 
of a new legislation was required. The new regulated procedure aiming at evaluating the physico-chemical 
properties of both new and existing chemicals and their adverse effects on humans and the environment. Thus, 
the new regulation (REACH) was made aiming at assessing the existing substances within a process of eleven 
years.  

It is known that most of the manufactured chemicals are missing information about toxicity [37,38]. In 
order to bridge this huge gap of knowledge on chemicals without increasing the actual numbers of animals used 
in the required tests, the European Commission made suggestions about alternatives to animal testing. This 
new system encourages the refinement of replacement strategies such as the development of new in-vitro 
methods but also the use of the validated in-silico techniques including computational predictive models. 

2.1. REACH, the European legislation about chemicals 

REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) is the new European 
Community regulation on chemical substances and their safe use starting from the 1st of June 2007 [39]. 

REACH aimed to protect humans, wild life and the environment by assessing the risks that can be 
caused by chemical substances in a gradual process. The most dangerous chemicals are going to be 
progressively substituted as soon as suitable alternatives are found. These goals should be achieved in 
transparency without altering the innovative capability and competitiveness of the chemical industry.  

REACH is expected to have a gradual positive impact on health by restricting substances of high 
concern that can be linked to cancers, skin irritation, respiratory diseases, vision disorders, asthma, endocrine 
disrupting, inter alia. 

According to World Bank estimates and other prudent assumptions, REACH would result in a 10% 
reduction of diseases caused by chemicals [40]. Assuming that these diseases account for about 1% of the 
overall burden of all types of disease in Europe, the reduction of 0.1% would be equivalent to avoiding 4500 
deaths every year [36]. 

The implementation of the REACH legislation will also increase the information on hazards of 
chemicals and thus improve the quality of the environment. It aims to improve the assessment of persistent, 
bio-accumulative and toxic substances so as to prevent them from polluting the air, water and soil. 
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According to REACH, providing safety information and assessing risk of chemicals is responsibility of 
manufacturers or importers. The required properties of the substances should be gathered before dealing it in 
the market. This necessary information for the safe handling of chemicals should be registered in the central 
database managed by the European Chemicals Agency (ECHA, Helsinki). 

2.2. The European Chemicals Agency (ECHA) 

The role of ECHA within REACH is to ensure the proper implementation of the legislation and build 
credibility with all stakeholders by managing the technical, scientific and administrative aspects of the regulation 
at Community level [41]. The central point that the Agency acts can be summarized as following: management 
of the registration process, evaluation of the dossiers, taking decisions about the suspicious chemicals and 
coordinating between consumers and professionals by running databases of the available hazard information.  

Another important role of ECHA is to enable sharing of the public information about chemicals at the 
pre-registration stage by means of substance information exchange forums set-up for the purpose. Such forums 
are useful to fill the lack of sufficient experimental and predicted information about chemicals in order to avoid 
testing on vertebrate animals and costs accordingly. 

2.3. Mode of action within REACH 

The idea behind REACH is that chemicals should be tested for any harm to humans or the environment by 
manufacturers or importers before putting them on the European market. This is pushing the industries to 
acquire more knowledge about their products and assess any potential risk. Thus, the only task left for the 
authorities is to make sure industries are compliant with all the requirements about substances of high concern.   

A registration dossier should be submitted to ECHA for each substance manufactured or imported in 
quantities of 1 ton or above per year otherwise the product will not be allowed in the European markets [36]. 
The dossiers of substances potentially harmful to human health or the environment are prioritized. According 
to REACH, the dangerous substances are classified into: carcinogenic, mutagenic or toxic to reproduction, 
persistent, bioaccumulative and toxic (PBT) or very persistent and very bioaccumulative (vPvB). Dossiers of 
such suspected substances should contain additional physicochemical properties and relevant eco-toxicological 
information. 

For the chemicals exceeding the quantity of 10 tons per year, a Chemical Safety Report (CSR) is needed. 
This report should include an assessment of the potential hazards as well as a classification to PBT or vPvB 
substances. The CSR is also supposed to include an exposure scenario for potentially dangerous substances.  

According to REACH requirements, new experimental testing is allowed only if there are no alternatives 
to provide information about the substance. The use of existing information or techniques such as in-vitro, 
quantitative structure-activity relationships (QSARs) and read across are, therefore, prioritized. 
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3. QSARS for regulatory purposes 
 

 

 

 

3.1. QSARs and REACH 

One of the central principles of REACH legislation is to keep animal testing as the last resort to provide the 
required information about the submitted substances. Alternatives to animal testing are therefore promoted and 
special mechanisms were built-in for the purpose. QSARs are particularly encouraged and their use is 

recognized within the regulation’s legal text by detailing special guidance documents [42]. 

QSARs are used to predict the behavior of chemicals from their structures, leading to better 
understanding of the adverse effects of the studied substances in cells and tissues. These modeling techniques 
make use of existing experimental data to predict new chemicals. The conceptual basis of QSARs is that similar 
structures are expected to exhibit similar biological behavior. The appropriate theoretical descriptors calculated 
from structural information are used to train the models and predict the biological activity of the chemicals. 
Thus, the environmental and eco-toxicological endpoints of interest could be assessed complying with the 
regulatory requirements for human health and minimizing, at the same time, the need for animal testing. 

Different principles and guidelines for QSARs have been established by the REACH authorities in order 
to harmonize the models used for predictions. Even being a highly valuable tool, any inappropriate use of these 
methods could cause a failure at REACH compliance check. Subsequently, a move forward animal testing can 
be made, which is in disagreement with reducing the costs and waiving animal test requirements. 

3.2. OECD Principles for the Validation of QSARs 

Five principles to establish the validity of QSAR models for use in regulatory purposes and assessment of 
chemical safety have been adopted at the 37th Meeting of Chemicals Committee and Working Party on 
Chemicals, Pesticides & Biotechnology, held in Paris on 17-19 November by the OECD Member Countries 
[43,44].  

In this work, attention was paid to these principles during the QSAR modeling procedure. The 
evaluation of each of the five principles is an important condition in order to propose models to be applied for 
the regulatory purposes of REACH , which was the aim of this thesis. 

The OECD principles intended to be considered in QSAR model validation for regulatory purposes 
within REACH, are as follows: 

Principle 1: Defined Endpoint 
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Since experimental protocols and conditions determining the same endpoint may vary from a laboratory to 
another, it is therefore important to ensure clarity in the endpoint that a given model is predicting. To avoid any 
misleading ambiguity regarding the interpretation of the defined endpoint, guidelines have been developed to 
meet the information requirements of a given regulatory purpose and in the same time, the scientific sense of 
defined endpoint referring to a specific effect on a specific tissue/organ under precise conditions. 

Principle 2: Unambiguous Algorithm 

Transparency is essential in the used algorithm for building the model and generating the predictions for a 
chemical’s specific endpoint from its structure and/or physicochemical properties. This information is useful to 
independently establish the performance and the reproducibility of the predictions of a given model. Any 
missing information about the used algorithm, which is usually the case in commercially-developed models, 
could rise ambiguity and represent a barrier for regulatory acceptance of the model. 

 Principle 3: Defined Domain of Applicability 

Since the reliability of predictions by QSAR models is usually associated with limited types of chemical 
structures, physicochemical properties and mechanisms of action, a defined applicability domain is needed. It is 
the duty of QSARs developers to define the needed information and the appropriate methods for establishing 
the applicability domains of their models. 

 Principle 4: Appropriate Measures of Goodness-of-Fit, Robustness and Predictivity 

The intent of this principle is to include all the three steps of the development of a QSAR model. Proper 
techniques to measure the degree of fitting of the studied endpoint to the structures of the used chemicals 
should be applied. The robustness of a model is determined in the validation step to avoid any over-fitting , 
while its predictive ability could be checked by an external test set of compounds that were not included in the 
fitting step. 

Principle 5: Mechanistic Interpretation if possible 

It is known that is not always easy to provide a mechanistic interpretation of QSARs from a scientific point of 
view, it could also happen that a multitude of interpretations are possible for a unique model. Thus, such 
information is not mandatory for a model to be accepted in a regulatory context. The intent of this fifth 
principle is to encourage documenting any attempt to associate the significance of the used descriptors to the 
endpoint that the model aimed to predict.  
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1. Introduction 
 

 

 

 

Computer-based tools are increasingly employed in most fields of scientific research. The use of computer 
technologies to process chemical data resulted in the relatively new discipline called Chemoinformatics, which 
combines the use of theoretical chemistry and mathematical algorithms. In the fields of environmental and life 
sciences, Chemoinformatics represents a link between chemistry and biology. QSAR modeling is an important 
tool in Chemoinformatics and it exploits this theoretical connection. In fact, the investigation of the structure-
activity relationships (SARs) is mainly based on the premise that biological activity (or property in the case of 
QSPR) of a given chemical can be predicted from its molecular structure since it depends mainly on its intrinsic 
nature. The conceptual basis of QSARs is the congenericity principle which states that compounds with similar 
structures are assumed to be associated with similar properties. Thus, the biological activity of chemicals can be 
inferred from the properties of the compounds with known experimental responses. This explains the 
relevance of the computational predictive models that can be used to fill the lack of knowledge on chemicals 
for scientific as well as regulatory purposes. 

However, QSAR models should first demonstrate high predictive ability in order to be useful for 
regulatory applications. For this reason, general guidelines of good practice have been published in the literature 
[45]. In addition, REACH requires a set of 4 conditions in alignment with the OECD principles to be fulfilled 
for QSAR modeling [46]: 

- the model is scientifically valid; 
- the model is applicable to the chemical of interest; 
- the prediction is relevant for the regulatory purpose; and 
- the method and results are appropriately documented. 

This chapter explains the conceptual basis of QSAR/QSPR as well as the methodologies used in this 
thesis, from data acquisition and preparation, through calculation of molecular descriptors, application of 
appropriate machine learning methods till the model validation and the assessment of its domain of 
applicability. 
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2. Data acquisition and curing 
 

 

 

 

The development of a predictive QSAR model is a process of several steps. Initially, the gathering and 
screening of experimental data is required. This step is fundamental to providing reliable data for subsequent 
QSAR models. Therefore, it is one of the most important steps of the analysis, since all the results will depend 
on data quality.  

2.1. Data sources  

Collection of experimental data requires a deep investigation in the scientific literature to extract the appropriate 
data from reliable sources. Moreover, QSAR models should be based on datasets that present good coverage of 
a wide range of the chemical space. Unfortunately, a single published experimental study does not always 
present a sufficient amount of data needed for QSAR analysis. It also occurs that the experimental conditions 
and/or the used test protocol are not explicitly available. This condition can be misleading especially for 
specific and similar endpoints such as BioConcentration Factor (BCF) and BioAccumulation Factor (BAF), 
which differ only by the ways of uptake. Thus, merging experimental data from different sources for modeling 
purposes could be a time demanding process. 

However, data collection can be facilitated by the use of experimental data collected in publicly available 
databases. There are several online databases which store information on chemical compounds including 
physicochemical properties, toxicological/eco-toxicological and environmental fate endpoints. Examples of 
these databases are ChemSpider [47], PubChem [48,49], ChemExper [50]. These databases have useful 
searching options, such as chemical name, CAS-RN (Chemical Abstract Registration Number) [51,52], PubMed 
ID [53] and/or structure representations such as SMILES and INCHI codes [54]. 

In addition to the information about chemicals, other online sources provide also access to modeling 
tools designed for QSAR, such as VCCLAB [55], OCHEM (Online Chemical Modeling Environment) [56], 
OpenTox [57], QSARdb [58], SPARC [59] and PBT profiler [60], inter alia. 

Moreover, some QSAR modeling software allow access to their databases. One example is the OECD 
QSAR toolbox, a huge database of referenced entries accessible through a user-friendly interface enabling a rich 
list of features such as multi search options for 2D structures, a large number of physico-chemical properties 
and endpoints for a wide range of chemicals [61]. Another relevant data source for QSAR is the online freely 
available database of the United States Environmental Protection Agency (US-EPA) [62]. The datasets used to 
build the physicochemical and environmental fate models implemented in EPI (Estimation Program Interface) 
Suite are available online [63]. It can also store QSAR models and provide literature references. 
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2.2.  Data curing 

The online QSAR datasets and those included in the software databases may contain different types of errors. 
One of the commonly encountered errors is the presence of duplicates of molecules. Duplicates can be perfect 
copies, and in this case the error can be solved by keeping only one of the database entries. However, in most 
of the cases, it is not easy to deal with duplicates. This usually happens in merged datasets from different 
sources and/or experimental conditions, which can give different results for the same compound. Nevertheless, 
it also occurs that different entries can be merged resulting in “false” duplicates when compounds have the 
same identifier but different structures and vice versa. This problem can be avoided by using more than one 
identifier (e. g. CAS-RN, INCHI, chemical name, molecular formula) in addition to the internal identifier of the 
database. Matching all of these identifiers during queries and making them available with the published QSAR 
model can remove ambiguity for the users. 

Another source of errors in the databases is related to the structure representations. This type of errors 
can highly affect the quality of the model since the chemical structures are used to calculate the molecular 
descriptors. Storing the structures in two-dimensional (2D) format rather than 3D can facilitate their use and 
the database management as well as the subsequent modeling steps. The commonly used 2D formats are 
SMILES (simplified molecular-input line-entry system) [54], or unique SMILES [64]. 

However, several errors in the SMILES notations can be faced during the structures checks [65,66]. The 
most common are related to stereochemistry, valence and charge. 

Other ambiguities could occur when experimental results are reported in different units. Thus, all values 
should be converted to the appropriate unit before merging them and proceeding with the modeling step. As an 
example, several endpoints should be given in molar units rather than weight or concentrations. This can be 
explained by the fact that biological activity usually depends on the number of present molecules and not on 
their weight [45]. 

Since the comprehensive assessment of QSAR data requires checks for errors and self consistency, 
dealing with it manually is a hard task especially in the case of huge databases.  

Several Chemoinformatic tools and data-mining software are available to eradicate the inconsistency of 
experimental data. The main tools employed in this work were ChemBioFinder and KNIME. 

2.1.1. ChemBioFinder 

A complete set of tools for database management is available in ChemBioFinder software (CambridgSoft) [67]. 
It allows storing of chemical information including identifiers, physicochemical properties, notes, tables of data 
and charts. The data can be imported and exported easily in different formats. The obtained database is 
searchable by querying a multitude of field combinations. The searching methods can be based on text, 
numbers, full structures or sub-structures for an exact match, similarity or tautomerism specifying the desired 
stereochemistry. This chemical database manager performs also searches for duplicates, errors and other special 
searches. 

This tool is part of the ChemBioOffice software that is a modeling suite for chemists and biologists 

[68]. It performs structure activity relationships calculations, clustering, statistics, physicochemical and 
bioavailability properties predictions, viewing and editing the small molecules and peptide structures in addition 
to database management. 
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This software suite was used during this project (under a license provided by the University of 
Strasbourg) to analyze a big dataset of compounds for log P prediction. 

2.1.2. KNIME 

Another powerful tool extensively used during this work is the data-mining software KNIME (Konstanz 

Information Miner) [69]. It is a user-friendly graphical workbench for the entire data analysis process starting 
from the initial data access, transformation and investigation until the predicting analytics, visualization and 
reporting steps. Over 1000 modules, called nodes, are provided by its open integration platform including the 
contribution of the users’ community and partner network. The desktop version of KNIME is a free and open-

source, released under the GNU General Public License (GPL) [70].  

Once KNIME has been started, the installed extensions such as WEKA, R and MATLAB integrations 
and other additional nodes for data analysis are loaded and initialized. Then, the workbench is opened showing 
the platform of the tools for data-mining. It is intuitively organized in different sections and mainly consists of 
the workflow editor, the node repository and the node description. 

To build a new workflow, the nodes are dragged from the node repository to the workflow editor. The 
selected nodes are, then connected according to the desired order through their input/output ports and 
configured to perform the needed tasks. In the end the workflow is executed, following the right order of the 
nodes or in parallel if possible.  

The repository contains all the installed nodes organized in categories and subcategories. By default, 
KNIME offers different features of preinstalled nodes for Chemoinformatics as well as other fields. It has 
nodes for integrated scripting languages (Perl, Python, R, MATLAB) and packages of basic input/output and 
advanced data processing operations.  

KNIME workflows can interact with any software installed on the computer by using the “External 
tool” node. To interact with online sources, KNIME has the “Generic Web-service Client” node. During this 
work, this tool was particularly useful for retrieving and/or checking the chemical structures from online 
databases that provide SOAP web-services. ChemSpider database gives free access for academic users to its 
APIs services for searching and retrieving chemical information through automated workflows such as KNIME 

or Pipeline Pilot [71]. OCHEM also offers several API services for uploading data as well as creating and 

applying QSAR models [72]. The newly developed node named CIR (Chemical Identifier Resolver) have been 
used in order to exploit CACTUS the online service of the NCI/NIH for checking chemical structures and 

converting different formats [73,74]. 

There is a wide range of nodes developed by the users’ community and KNIME partners. These 
packages are continuously improved and updated while new ones are being released with every version. In the 
field of Chemoinformatics, there are several useful tools that have been included in the node repository, such 
as: ChemAxon tools, the Chemistry Development Kit CDK, PaDel and many others that allow performing all 
steps of data gathering and curing as well as modeling and predicting of new chemicals. The developers of 
KNIME have recently published a book entitled “Guide to Intelligent Data Analysis” to explain many data-

mining techniques giving examples of how it can be applied using KNIME workflows [75]. 
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3. Molecular descriptors 
 

 
 
 

3.1. Introduction 

Structure–activity relationships (SARs) are theoretical models relating structural features of chemicals to their 
experimental activity/property. These models are used in order to predict physicochemical, biological or fate 
properties of a given molecule on the basis of its chemical structure. 

The complexity of a molecular structure is due to the fact that most of its properties cannot be derived 
from the summation of the properties of its single atoms [76]. Hence, it is a holistic system that depends on the 
atomic connections and interactions. Consequently, a molecular structure has not a unique representation but 
several possible models depending on the theoretical approach adopted and the degree of approximation. 

 
Figure 1: different levels of structural representation. 

As shown in Figure 1, different “symbolic” representations for the same molecule are possible. It can 
vary from the simple nomenclature or molecular formula to the 2D representation based on the graph theory 
and the more complex 3D conformations [77,78]. However, these representations, offering different aspects of 
the chemical information, are usually not derivable from each other. 

These different levels of representations are used by scientific researchers to retrieve the corresponding 
theoretical information encoded in the molecular structure in order to establish the desired relationships 
between the studied structures and the experimentally demonstrated properties. This information is converted 
to a significant number called molecular descriptor. 

By definition: “The molecular descriptor is the final result of a logic and mathematical procedure which transforms 
chemical information encoded within a symbolic representation of a molecule into an useful number or the result of some 
standardized experiment” [76]. 

For the key role they are playing in many fields of scientific research, a special interest is given to the 
development of molecular descriptors. Thousands of descriptors have been proposed in the literature. Their list 
is being continuously updated and their number increasing with the complexity of the investigated chemical 
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systems. This is enhanced by the fast increase of the computational speed enabling the rapid calculation of 
molecular orbital and quantum mechanical descriptors such as charges, dipole moments and energy levels. 

Molecular descriptors are required to encode the hydrophobic, electronic and steric aspects of a molecule 
in order to be able to describe the biological activity of a chemical in a living organism.  

As for structural representations, molecular descriptors are classified in five dimensions equivalent to 
different levels of “complexity” according to the encoded chemical information: 

- The 0D corresponds to the molecular formula. At this level, the retrieved information is 
independent from any structural representation and can be referred to as weighting schemes, atom 
type counters or constitutional indices. The UIPAC International chemical Identifier (InChI) is also 
used as a descriptor to predict properties of chemicals [79].  

- In the 1D class, only partial knowledge of the structure concerning functional groups and fragments 
is needed. Such groups of adjacently connected atoms in a molecule are typically used in 
substructural analysis. The presence of biological activity related to a substructure is called structural 
alert [80].  

- The 2D class of descriptors is based on graph theory. These descriptors are mainly topological and 
connectivity indices. Recently, the 2D molecular representations, such as SMILES, were also used as 
descriptors for QSPR models [81].  

- The 3D descriptors are derived from the geometrical representations of the molecules and they 
encode information about the size and shape of a studied conformation of the molecule.  

- Finally, the 4D descriptors take into consideration the flexibility aspect of the 3D structural 
representation of the molecule used in 4D- or Dynamic-QSAR. This class of descriptors also 
includes the stereo-electronic representations characterizing the electronic interactions of a molecule 
with its surrounding environment. This concept is the basis of the grid-based QSAR techniques such 
as the Comparative Molecular Field Analysis (CoMFA) [82–84]. 

A comprehensive review of molecular descriptors has been published by Todeschini and Consonni [76]. 

Since the models developed in this research work were aimed to be used in regulatory purposes within 
the new European legislation on chemicals (REACH), care has been taken in the choice of molecular 
descriptors to be included in the models. Only interpretable and reproducible descriptors have been considered. 
Thus, descriptors based on 3D representations were excluded in order to avoid the irreproducible geometrical 
optimization of molecular conformers.  

3.2. Analysis of new molecular descriptors 

In this work, in addition to the classical molecular descriptors a set of new descriptors has been evaluated. In 
particular, the recently developed spectral indices, derived from different graph matrices, have been analyzed 
for the first time and used later in the QSAR models [85]. Moreover, this analysis focused on some other 
topological descriptors which have never been used to model environmental endpoints and other string 
representations which are relatively new descriptors for QSAR modeling, being only used in database searching. 

3.2.1. Spectral indices 

Spectral indices are molecular descriptors based on the eigenvalues of graph theoretical matrices. Since they can 
be derived from any graph-theoretical molecular matrix, there is a large number of combinatorial possibilities of 
these indices [76,86,87]. Besides the adjacency (A), Laplacian (L), Barysz (Dz) and Burden (B) matrices, some 
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other matrices to derive spectral indices are the distance-path matrix, Szeged matrix, distance valency matrices, 
geometry matrix, resistance distance matrix and conductance matrix [86,88–91]. However, not all of the 
combinations that can be derived from such matrices have already been evaluated and used as molecular 
descriptors for QSAR/QSPR studies. 

Using a molecular matrix 𝐌(𝐴 × 𝐴) with a weighting scheme 𝑤, the most commonly used indices are 
calculated as following: 

𝑆𝑝𝐴𝑏𝑠(𝐌,𝑤) = �|𝜆𝑖|
𝐴

𝑖=1

 

𝑆𝑝𝑃𝑜𝑠(𝐌,𝑤) = �(𝜆𝑖+)
𝐴+

𝑖=1

 

𝑆𝑝𝑀𝑎𝑥(𝐌,𝑤) = 𝑚𝑎𝑥𝑖{𝜆𝑖} 

𝑆𝑝𝑀𝑎𝑥𝐴(𝐌,𝑤) = 𝑚𝑎𝑥𝑖{|𝜆𝑖|} 

where 𝜆𝑖 are the eigenvalues of the matrix or spectrum. 

𝑆𝑝𝐴𝑏𝑠 is the sum of the 𝐴 absolute eigenvalues of the molecular matrix. When derived from the 
adjacency matrix, this entity is called the graph energy (E) [92–94]. It is also called the Laplacian graph energy 
when it’s calculated from the Laplacian matrix [95,96]. 𝑆𝑝𝑃𝑜𝑠 is the sum of the 𝐴 positive eigenvalues of the 
weighted matrix. 𝑆𝑝𝑀𝑎𝑥 is the leading eigenvalue of the spectrum corresponding to the Lovasz-Pelikan index 
when it’s derived from the adjacency matrix [97]. 𝑆𝑝𝑀𝑎𝑥𝐴 is the maximum absolute value of the spectrum 
[76]. 

The spectral moments are a similar class of molecular descriptors. Applied on the weighted graph-
theoretical matrix (𝐌,𝑤), the spectral moments are defined in terms of the kth power of eigenvalues [76]. 
These descriptors are calculated as following: 

𝜇𝑘(𝐌,𝑤) = �𝜆𝑖+
𝑛

𝑖=1

 

where 𝑘 = 1, … , 𝑛 define the order of the spectral moment. 

The spectral moments were extensively used by E. Estrada in the QSAR/QSPR studies [98–101].  

Although being largely investigated, due to their large number, spectral indices and spectral moments have not 
been fully investigated tested and used in the literature of QSAR modeling. In this work, some of these 
descriptors have been successfully included in the QSAR models for predicting biodegradability of chemicals 
[102]. 

Two new families of spectral indices have been recently developed and published in the literature [85]. 
These indices are calculated on the same basis as the previously defined spectral indices, using any graph-

theoretical matrix 𝐌(𝑤), its eigenvalues 𝜆𝑖 and their average 𝜆̅. 

The sum of absolute deviations from the average eigenvalue: 

𝑆𝑝𝐴𝐷(𝐌,𝑤) = ��𝜆𝑖 − 𝜆̅�
𝑛

𝑖=1
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The mean absolute deviation which is size independent: 

𝑆𝑝𝑀𝐴𝐷(𝐌,𝑤) =
∑ �𝜆𝑖 − 𝜆̅�𝑛
𝑖=1

𝑛
 

Tested in some univariate models, these indices showed interesting properties and modeling ability [64]. 
In this work, 𝑆𝑝𝑀𝐴𝐷 indices have been used to model the bioaccumulation of polybrominated diphenyl ethers 
in aquatic species [103]. 

These descriptors have several useful features for QSAR/QSPR studies. Even though these indices are 
extracted from relatively complicated matrices, their decomposition and interpretation could lead to some 
relevant correlation that describes the physicochemical and/or biological properties of the investigated 
molecular structures [98]. The contribution of such descriptors to the studied properties can be described by 
means of known properties such as molecular mass, branching or steric features of the structures [104]. In 
addition to QSAR analysis, these descriptors can also be useful in similarity/dissimilarity studies of chemicals 
[98]. 

3.2.2. Matrix-based descriptors 

Matrix-based descriptors are topological indices calculated in two steps. First, the information encoded in the 
H-depleted molecular graphs of chemicals was encoded into the graph-theoretical matrices. Then, quantitative 

indices were obtained by applying a set of basic algebraic operations to the graph-theoretical matrices [76]. All 

the calculations were performed by the software DRAGON [105]. 

The topological indices are molecular descriptors derived from the molecular graph. They numerically 
quantify the molecular topology independently from the vertex numbering or labeling. These indices are able to 
encode the structural features of the molecules such as shape, size, cyclicity, molecular branching and atom 

types [106,107]. One example of the most used topological indices is the connectivity indices. These latter 

ones are derived from the H-depleted where each vertex is weighted by the vertex degree [108]. 

The adjacency matrix (A), also called vertex adjacency matrix, is one of the fundamental graph-
theoretical matrices. It encodes the connections between the adjacent pairs of atoms [109]. This matrix is an 
important source for molecular descriptors calculation since different other useful matrices, such as Laplacian 

(L), Barysz (Dz) and Burden (B), are derived from it [76]. The latter matrices are used to calculate the different 
2D matrix-based descriptors considered in this study. 

Laplace matrix L is given by the difference between a diagonal vertex degree matrix and the adjacency 
matrix A: 

[𝐋]𝑖𝑗 = �
−1         if (𝑖, 𝑗) ∈ E(G)
𝛿𝑖              if 𝑖 =  𝑗              
0            if (𝑖, 𝑗) ∉ E(G)

� 

where δi is the i-th vertex degree, that is, the number of vertices adjacent to vertex i and E(G) is the set of 
graph edges. 

Burden matrices 𝐁(𝑤) are augmented adjacency matrices defined to account for heteroatoms and bond 
multiplicity calculated as the following:  
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[𝐁(𝑤)]𝑖𝑗 =

⎩
⎪
⎨

⎪
⎧ �𝜋𝑖𝑗∗            if (𝑖, 𝑗) ∈ E(G)

𝑤𝑖
𝑤C

               if 𝑖 =  𝑗              

0.001         if (𝑖, 𝑗) ∉ E(G)

� 

The diagonal elements are atomic carbon-scaled properties such as the mass (m) and the polarizability 
(p). The off-diagonal elements corresponding to pairs of bonded atoms are the square roots of conventional 

bond orders π* (i.e., 1, 2 , 3, and 1.5 for single, double, triple and aromatic bonds, respectively). The remaining 
matrix elements are set at 0.001 by default. 

Barysz matrices 𝐃𝐳(𝑤) are weighted distance matrices obtained by generalizing the Barysz weighting 

scheme in terms of conventional bond orders π* and any atomic property [110]: 

[𝐃𝐳(𝑤)]𝑖𝑗 = �
𝑑𝑖𝑗(𝑤,𝜋∗)          if 𝑖 ≠ 𝑗

1 −
𝑤C
𝑤𝑖

               if 𝑖 = 𝑗
�                𝑑𝑖𝑗(𝑤,𝜋∗) = ��

1
𝜋𝑏∗

∙
𝑤C2

𝑤𝑏(1) ∙ 𝑤𝑏(2)
�

𝑑𝑖𝑗

𝑏=1

 

where wC is any atomic property, such as Sanderson electronegativity (e), of the carbon atom and wi the 

corresponding value of the i-th atom. dij(w,π*) is a weighted topological distance that is the sum of the edge 

weights over all bonds involved in the shortest path between vertices vi and vj. The subscripts 𝑏(1) and 𝑏(2) 
are representing the two vertices incident to the considered b-th edge. 

The hyper-Wiener-type indices (𝐻𝑦𝑊𝑖) and the Balaban-like indices (J) are two examples of the 

topological indices that can be derived from the previously described matrices (𝐁(𝑤) and 𝐃𝐳(𝑤)) [111,112]. 
Variances of theses indices calculated using the mass (m) and electronegativity (e) as weighting schemes have 

shown interesting modeling properties [102]. 

The 𝐻𝑦𝑊𝑖 indices, also called hyper-Wiener operator, are calculated by analogy to the hyper-Wiener 
index (𝑊𝑊) derived from the Wiener matrix by taking into consideration also the diagonal elements of the 

weighted matrix 𝐌(𝑤) [76,113]. 

The general formula for calculating the hyper-Wiener-type index is the following [111]: 

𝐻𝑦𝑊𝑖(𝐌;𝑤) =
1
2
∙���[𝐌(𝑤)]𝑖𝑗2 + [𝐌(𝑤)]𝑖𝑗�

𝐴

𝑗=𝑖

𝐴

𝑖=1

 

where 𝐴 is the number of graph vertices and 𝐌(𝑤) is a graph-theoretical matrix calculated using the weighting 
scheme 𝑤.  

While the original Wiener index (W), which is one of the first molecular descriptors, is obtained by 

summing the lengths of the shortest paths in the graph [114]. It was the first descriptor proposed for 

molecular branching [115].  

The Balaban-like indices are similar to the Balaban distance connectivity index which is a graph invariant 

molecular descriptor independent from the molecular size or number of rings [116–118]. They are also 
calculated in a similar way. However, in the Balaban-like index the vertex distance degrees are substituted by the 

row sums of the considered graph-theoretical matrix [76].  

The Balaban-like index general formula is given by [112]: 
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𝐽(𝐌;𝑤) =
B

C + 1
. � � 𝑎𝑖𝑗 . �𝑉𝑆𝑖(𝐌;𝑤).𝑉𝑆𝑗(𝐌;𝑤)�−1/2

𝐴

j=i+1

𝐴−1

i=1

 

where A, B and C are the number of vertices, edges and rings, respectively. 𝐌 is the graph-theoretical matrix 
calculated using the weighting scheme 𝑤. 𝑎𝑖𝑗 the elements of the adjacency matrix and 𝑉𝑆 is the vertex sum 

operator applied to the matrix 𝐌. 

3.2.3. Vectorial descriptors 

The vectorial descriptors are a special class of molecular descriptors, initially developed to perform queries in 
big databases for similarity searching [119,120]. Recently, these bit-strings started to be used as descriptors for 
QSAR modeling [121–124]. Since they usually consist of fixed lengths of strings mostly varying from hundreds 
to thousands of bits to enclose the most of the needed information, the variable selection step is always 
skipped. 

This class of descriptors can be categorized into two groups: structural keys and fingerprints. Starting 
from a set of predefined structural features, the structural keys can be binary vectors specifying the presence 
and absence by 1 and 0, respectively, or can be counts of the selected functional groups, augmented atoms, 
atom pairs, atom-type electro-topological states (E-states), pharmacophore points, etc [125,126]. Fingerprints, 
in the other hand, are Boolean vectors defining a set of patterns and generated, by means of hashing 
algorithms, in a way to capture the common chemical features present in a data set [127]. Whereas structural 
keys present a straightforward correspondence between bin and fragments, hashed fingerprints may encode 
several fragments into a single bin according to the used string hashing algorithm [54]. 

Following the general classification pattern for molecular descriptors, these string representations of 
chemical structures are categorized in 2D, 3D and 4D accordingly [123,124,128–131]. 

In this work, only structural keys have been tested for QSAR modeling towards the endpoints of interest 
for REACH. These fragmental bit-strings have been already used in the literature to model biodegradability of 
chemicals [121]. 

Several types of structural keys have been presented in the literature. Their string lengths can vary 
depending on the amount of information encoded. The predefined dictionary of fragments used in indexing the 
chemical structures usually consists of small groups of atoms, functional groups or rings. 

Examples of commonly used 2D structural keys implemented in specific automated tools are MACCS 
and PubChem keys. 

MACCS keys, the Molecular ACCess System descriptors, are created by Molecular Design Limited [132]. 
They are 2D substructural descriptor encoding atoms types, rings and bond information. Originally, it was 
generated in a 960 key-bits format and later a subset of 166 key-bits was extracted [133]. 

The PubChem binary substructure keys are developed to be used by PubChem database in order to 
perform the searching queries [49]. The length of this string is 881 bits, with a four-byte prefix, the size of this 
descriptor is therefore 115 bytes. The PubChem bit-string is divided in 7 sections of SMILES or SMARTS 
(SMiles ARbitrary Target Specification) notations [54]. These sections encode hierarchic atom-type counts, 
rings, atom pairs, atom nearest neighbours, atom connections, simple and complex SMARTS patterns [134]. 



 3. Molecular descriptors 
 

20 
 

3.3.  Software for descriptor calculation 

Several tools for descriptor calculation have been used along this thesis. Owing to the wide variety of packages 
available, only software used during this work are presented. 

3.3.1. DRAGON 

Thanks to its large number of descriptors, DRAGON software is one of the most widely used tools for 
molecular descriptors calculation [105]. It was the main tool of molecular descriptors calculations used in this 
work. It calculates almost 5000 molecular descriptors [135]. To facilitate the calculation task for users, the 
descriptors are categorized in 29 logical blocks of known groups such as constitutional indices, topological 
indices, geometrical descriptors, 2D and 3D atom pairs, functional groups and atom-type E-states. In addition, 
the calculation of several important molecular properties such as logP, topological polar surfaces, Van der 
Waals surfaces as well as some drug-like indices such as Lipinski’s rule of 5 is also provided. These properties 
and many others are also available in the related application dProperties [136]. These two packages support all 
the commonly used molecular formats and perform a preliminary check for the structures, i.e., erroneous and 
disconnected structures are usually rejected. DRAGON calculations can be performed from its intuitive and 
user-friendly interface or in batch mode by command line. Recently, DRAGON can also be executed in batch 
mode from a KNIME workflow using its dedicated node. In addition to molecular descriptor calculation, this 
software allows performing a preliminary analysis of the calculated descriptors prior to the modeling stage. Pair-
wise correlations, Principal Component Analysis (PCA), graphical analysis and import of external variables are 
other facilities provided by DRAGON. 

3.3.2. SubMat 

SubMat is a commercial software developed by the Chemometrics group of the Wien University of Technology 
[137]. It allows the generation of binary substructure descriptors from a user-provided list of predefined 
substructures checking for their presence/absence. The input files of both molecular structures and fragments 
dictionary must be in Molfile format [132]. The substructure searching method is based on the complete atom-
atom and bond-bond matching [138,139]. The developers of the software have also provided a list of 1365 
substructures covering a wide range of fragments based on mass-spectrometry fragmentation [140]. The 
maximum molecule size allowed is 127 atoms explicitly defined and 255 bonds per structure. 

3.3.3. The Chemistry Development Kit 

The Chemistry Development Kit (CDK) is an open-source Java library for structural Chemoinformatics and 
Bioinformatics [141]. It is available under the terms of the GNU Lesser General Public License (LGPL) [142]. 
Thus it is freely available for use and modification by academic and industrial institutions and may be integrated 
in proprietary packages [143]. Subsequently, its libraries started to be a basis for several software projects [141]. 
The development of the tool-kit is involving an international team of collaborators to maintain and update its 
packages providing a rich list of molecular modeling methods including structural rendering, searching, parsing 
and generation of chemical structures. In the recent versions of the software, the library became more 
Chemoinformatics oriented by adding packages for 2D and 3D molecular descriptor calculations as well as 
QSAR modeling tools [144]. 

A dedicated graphical user interface was designed for the molecular descriptor calculations [145]. The 
CDK Descriptor Calculator GUI is divided in two sections. One is providing a list of 6 blocks of descriptors 
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such as the topological, constitutional and geometrical descriptors [146]. The second section is dedicated to the 
substructure keys including MACCS, PubChem and E-state keys, as well as a hashed fingerprint of 1024 bits 
based on the Daylight theory [54,141]. The CDK Cheminformatics tool-kit is also available as package of 
several nodes for KNIME.  

3.3.4. PaDEL 

PaDEL is a useful software for calculating molecular descriptors and fingerprints [147]. It provides 863 
descriptors which are categorized in 729 1D-2D descriptors and 134 3D descriptors, in addition to 10 types of 
vectorial descriptors consisting of sub-structural keys and fingerprints. The software is mainly based on the 
CDK tool-kit, however, additional descriptors were implemented by the developers. These descriptors include 
E-state indices, logP, energy relation descriptors, ring descriptors as well as Laggner’s and Klekota-Roth 
molecular substructures [148–150]. Developed in Java programming language, PaDEL has the possibility to be 
easily integrated into other software (e.g. for QSAR modeling), called by command line or used as a standalone 
application GUI. Nodes for KNIME are also developed and available for free download as well as the source 
classes of the software [151]. 
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4. Variable selection techniques  
 

 

 

 

Though only one tool of molecular descriptor calculation is used and not all available types of descriptors are 
considered, the initially calculated descriptors can reach several hundreds or thousands. Certainly, such a large 
pool of descriptors will enclose not only feature rich but also redundant and irrelevant information for the 
subsequent QSAR modeling. However, a good QSAR model should be parsimonious, that is, including a set of 
variables which is information rich but as small as possible in order to avoid overfitting and allow the model 
interpretation. Hence, it is important to reduce the initial number of calculated descriptors before the modeling 
step.  

The first step of feature selection is usually a filtering step. It consists of the removal of highly correlated, 
constant and near constant descriptors. The methods that can be applied at this stage are unsupervised since 
the studied experimental response is not included in the analysis of variables. 

In DRAGON, this step can be carried out before exporting the calculated descriptors. Pair-wise 
correlation coefficients are calculated for all the descriptors. If a pair of descriptors has a linear correlation 
coefficient larger than a defined threshold the descriptor showing the largest average correlation with all others 
is discarded.  

Once the initial pool of descriptors has been reduced by means of initial filters, the suitable subset to 
build the QSAR model for the studied activity/property must be selected. Hence, feature selection methods 
coupled with the desired regression or classification algorithms can be applied. Several algorithms for variable 
selection have been proposed in literature. Most common examples are Genetic Algorithms (GAs) [152–154], 
stepwise forward/backward selection [155], particle swarms [156], simulated annealing and ant colony 
algorithms [157,158]. In this work, GAs and forward selection were considered. 

4.1.  Stepwise forward selection 

Forward variable selection is one of the most simple and fast selection techniques. Starting from a first 
descriptor and adding the remaining descriptors one by one, it evaluates the performance of the model by 
optimizing a fitness function [155]. The fitness function is chosen according to the type of the modeled 
response that can be continuous for regression models or categorical in the case of classification models. Thus, 
it could be for example the error rate in classification or the sum of squared residuals in regression. The results 
of this method are highly depending on the first included variables and the information included in the initial 
pool of descriptors cannot be completely explored. Consequently, the final selected descriptors are not 
necessarily the best representative descriptors of the original set. 
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4.2.  Genetic Algorithms (GAs) 

Genetic Algorithms (GAs) are one of the nature-inspired evolutionary algorithms. It is based on the biological 
concept of evolution to optimize the searching methods [159]. GAs are widely used in the fields of 
Chemometrics and Chemoinformatics [154,160,161].  

In QSAR modeling, these algorithms are applied on the multivariate descriptor space in order to find the 
optimal subsets of descriptors. The evolution process is carried out by maximizing the predictive ability of the 
models measured by a fitness function [152,153].  

The used terminology is adopted from the field of biological evolution. Thus, a population is an 
ensemble of individuals consisting of a chromosome and its associated fitness value. A chromosome is defined 
as Boolean vector describing the presence/absence of genes that represent the subset of selected variables. 
Each chromosome corresponds to a model with a certain predictive ability. 

The evolution process is performed in several steps. First, the initial population is randomly created. The 
number of initial chromosomes as well as their size are user defined, a priori. The models are, then, built and 
ordered according to their predicting ability. The fitness function depends on the nature of the endpoint being 
modeled. The different predictive and fitting measure methods are explained in Section II.6. 

The following is the reproduction step aiming to create the child population. Starting from the parents 
that are pairs of individuals randomly selected, the son chromosome is generated using the same genes of the 
parents by applying the two-fold genetic operations. A newly created individual is evaluated and ranked if it is 
unique in the current population, otherwise, it is automatically rejected. If its rank is better than at least one of 
the existing, the created child is a new member of the population excluding the worst one to keep the size 
constant.  

Crossover is a genetic operation that consists of swapping portions of the chromosomes of the parents. 
A variety of crossover ways have been described in the literature [152]. One of the possible implementations is 
to restrict the cutting operation to a single point. Then the two new chromosomes are created by exchanging 
the descriptors from one side of the split. The intent of the cross over is to generate better models than those 
in the initial population by preserving the best portions of the starting chromosomes.  

The second operation is the mutation which is performed on a single chromosome. In order to mirror its 
low frequency in natural biological evolutions, mutation is restricted to a low user defined probability. It 
consists of randomly changing one of the descriptors of a given chromosome by another one from the pool 
aiming to explore the maximum of the descriptors space and to avoid “premature” convergence by getting 
stuck in a local solution and miss the optimal one. 

These two operations are repeated creating generations of populations that are evaluated and ranked 
during the evolution process that takes a user defined number of cycles. At the end, the top ranked models are 
reported to the user who can decide about the best results based on different parameters and not only the used 
fitness criteria. 

The GAs used to perform the variable selection operations in the current study were inspired by the 
approach of Leardi et al. and implemented in MATLAB environment [153,154,162]. 
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5. Modeling methods in QSAR 
 

 

 

 

QSAR and QSPR are based on the observations that a change in the physicochemical properties of molecules 
can be induced by varying the chemical structures. QSARs started to have their concrete beginning with the 
works of Hansch and Free-Wilson in the early sixties of the last century [163,164]. Since then, the arsenal of 
modeling methods applied to QSAR studies have been broadened by adding several multivariate chemometric 
methods which have been continuously refined during the last decades. 

QSAR’s general mathematical form is:  

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑓(𝑝ℎ𝑦𝑠𝑖𝑐𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑎𝑛𝑑/𝑜𝑟 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠) 

Thus, the development of a QSAR model requires three key components. The first two ones, described 
in the previous sections, are: 

- experimental data acquisition and curing 
- description of the physicochemical properties and/or chemical structures by a set of molecular 

descriptors. 

The third one is the core of QSAR modeling and it consists of a theoretical function based on 
mathematical and statistical methods to find the required relationship linking the molecular properties to their 
structural descriptors.  

A multitude of prominent chemometric methods are used in QSAR studies. Methods considered in this 
work were:  

- exploratory data analysis methods such as Principal Component Analysis (PCA) and the Multi-
Dimensional Scaling (MDS); 

- regression methods including Multiple Linear Regression (MLR) and Partial Least Squares (PLS); 
- classification methods such as 𝑘th Nearest Neighbors (𝑘NN), Support Vector Machines (SVM) and 

Partial Least Squares Discriminant Analysis (PLSDA) [165–173].  

In this thesis, most of the used techniques were implemented and used within the MATLAB 
environment. 

5.1. Unsupervised methods for exploratory data analysis 

Unsupervised learning methods are used in descriptor data analysis for pattern recognition without making use 
of the experimental response. 
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5.1.1. Principal Component Analysis (PCA) 

Most of the chemical applications require multivariate data analysis. Since descriptors hyperspace usually 
encodes redundant and noisy information, it requires a powerful chemometric method to deal with the 
collinearity. PCA is one of the widely used tools for reducing dimensionality [174–176]. It is an exploratory 
technique used to visually estimate the structure of the multivariate data, detect pattern in the data as well as the 
presence of potential outliers. 

PCA adopts a compression technique of the correlated descriptors by projecting them into a new set of 
variables called Principal Components (PCs). These new orthogonal variables are linear combinations of the 
original descriptors. Since only few PCs are commonly retained, most of the dataset’s variability is enclosed in a 
lower dimensional space of orthogonal PCs. The first PC defines the direction of the maximum data variance, 
while the subsequent PCs describe the maximum of the remaining variance in directions which are orthogonal 
to each others. The redundancy is, therefore, removed and most of the initial information is explained by the 
first few PCs.  

5.1.2. Multi-Dimensional Scaling (MDS) 

MDS is a useful method that reconstructs the distribution of the initial hyper-dimensional data into a much 
lower space on the basis of the distances between the samples [165,166]. Thus the aim of MDS is to let the user 
to visualize the distances between the samples in order to have an approximate idea about the degree of 
similarity in the analyzed data. The degree of approximation in the low-dimensional space is explained by the 
residuals between the original and the new distances separating the samples. 

5.2. Supervised learning methods for modeling 

Unlike previously mentioned data exploratory methods, supervised learning methods use the experimental 
response being modeled. Thus, care needs to be taken in order to avoid over-fitting. 

The nature of the modeled response is a crucial factor in the choice of the method to be used. There are 
two types of methods:  

- classification methods handling categorical responses such as active/non active, toxic/non toxic or 
biodegradable/non biodegradable; 

- regression methods dealing with continuous responses such as logP and BCF. Nevertheless, some 
techniques are suitable both for classification and regression tasks.  

5.2.1. Regression methods 

5.2.1.1. The k Nearest Neighbors in regression 

𝑘NN is one of the simplest techniques for modeling. It makes use of the congenericity principle assuming that 
within a selected descriptors space, the closest compounds will have similar response.  

The commonly used metric in 𝑘NN modeling is the Euclidean distance. Other metrics such as 
Manhattan distance and Mahalanobis distance can also be applied [177]. Several methods can be applied to 
obtain the predicted response for a test sample. In this work, the predictions were processed in two ways: 

- by averaging the observed values of the 𝑘 nearest neighbors 
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- by weighting the observed values according to the distances of the test sample to the 𝑘 nearest 
neighbors. 

In this work, 𝑘 is optimized to get the best performance in cross-validation. The 𝑘NN approach often 
presents good results, however, its predictive ability in regression can be altered in the case of high-dimensional 
data [178].  

5.2.1.2. Multiple linear regression 

MLR is a mathematical method used to find a linear relationship between the observed response and a number 
of independent variables (descriptors) as follows: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖          𝑖 = 1,2, … ,𝑛       

where 𝑦𝑖 is the observed response, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝 are the independent variables for the ith sample, 𝑝 is the 

number of variables, 𝑛 is the number of samples and 𝜀𝑖 is the error of prediction. By estimating the parameters 
𝛽0,𝛽1,𝛽2, … ,𝛽𝑝 the equation of the linear model is: 

𝑦�𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 + ⋯+ 𝑏𝑝𝑥𝑖𝑝 

where 𝑏0,𝑏1, 𝑏2, … , 𝑏𝑝 are the estimates of the previous parameters and 𝑦�𝑖 is the predicted value of the model. 

MLR is based on the Orthogonal Least Square (OLS) algorithm that minimizes the sum of squares of the 
error between the predicted and the observed values ∑(𝑦 − 𝑦�)2. 

The vector of predicted values 𝒚� is obtained as following: 

𝒚� = 𝐛𝐗 

where 𝐛 is the vector of estimated parameters 𝑏0,𝑏1,𝑏2, … , 𝑏𝑝 calculated as: 

𝐛 = (𝐗′𝐗)−1𝐗′𝐲 

where 𝐗 and 𝐲 are the matrix of descriptors and the vector of experimental responses, respectively. 

MLR modeling is based on the assumption that the errors are a normally distributed random variable 
with constant variance. The obtained model is optimal when the regression estimators are unbiased, efficient, 
and consistent with a bias and variance approaching zero when the number of samples tends to the infinity. 

The disadvantage of this method is that collinearity between the descriptors highly affects the reliability 
of the regression coefficient estimates. Thus, reducing the number of included variables by removing those with 
insignificant coefficients can reduce the risk of multi-collinearity and contribute to enhance the reliability of 
predictions. 

5.2.1.3.  Partial Least Squares (PLS) 

PLS is a powerful statistical method applied in Chemometrics and other fields of scientific research [168]. A 

major advantage of this method is its ability to overcome the problem of singularity of (𝐗 ′𝐗) in MLR due to 
the number of columns (variables) larger than the number of rows (samples) as well as to the collinearity of 
variables. This problem is solved by decomposing 𝐗 into orthogonal scores 𝐓 and loadings 𝐏 as follows; 

𝐗 = 𝐓𝐏 
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Then, 𝐲 is correlated to the first columns of the scores instead of the original variables of 𝐗. In this way, 
PLS includes information from both, 𝐗 and 𝐲 in the calculation of the scores and loadings aiming to explain the 
maximum of variance in the original variables as well as the observed response.  

The general decomposition formula of multivariate PLS is: 

𝐗 = 𝐓𝐏′ + 𝐄 

𝐘 = 𝐔𝐐′ + 𝐅 

where 𝐓 and 𝐔 are the matrices of scores of 𝐗 and 𝐘, respectively. While 𝐏 and 𝐐 are the loading matrices. 𝐄 
and 𝐅 are the matrices of residuals. The aim of this decomposition is to maximize the covariance of 𝐓 and 𝐔. 

There are several implementations of PLS algorithms in the literature giving similar results especially in 
the case of a single vector response but may differ slightly when dealing with multivariate responses [179,180]. 

In PLS regression, the components are called Latent Variables (LVs) and are, thereby, incorporating 
information from the descriptors, the experimental observation as well as the correlation between them. The 

LVs are calculated by SVD decomposing the cross-product of the variables 𝐒 = 𝐗 ′𝐲. 

5.2.2. Classification methods 

5.2.2.1. The k Nearest Neighbors (kNN) 

The 𝑘NN approach for classification operates similarly to regression. Assuming that the class probabilities are 
approximately uniform within its neighborhood, a new sample’s class is predicted according to the majority 
class of its 𝑘 neighbors. However, this assumption could become invalid in the case of high-dimensional 
datasets. Even though, 𝑘NN performs better in classification than in regression for with such high 
dimensionality [181]. 

After choosing the metric distance, the optimal number of neighbors can be determined by trying 
different values and comparing the errors in prediction.  

5.2.2.2. Partial Least Squares Discriminant Analysis (PLSDA) 

PLSDA takes advantage of both methods, PLS and Linear Discriminant Analysis [173,182]. It first performs a 
dimensional reduction of collinear and noisy data into orthogonal Latent Variables. Then, these PLS-type LVs 
are used to make a prediction for the new investigated sample as if the observed response was a continuous 
variable. The obtained value is then compared with a threshold in order to predict the class of the sample. The 
model interpretation can be carried out with respect to the original variables. 

In PLS as well as in PLSDA, the choice of the optimal number of LVs to be selected is made using the measure 
of fit and validation techniques. 

5.2.2.3.  Support Vector Machines (SVM) 

SVM are a relatively new and sophisticated nonlinear learning method originally developed by Vapnik et al. for 
binary classification purposes [183–185]. Basically, the idea is to find an hyper-plane able to separate a 
multidimensional data into two classes. The hyper-plane should be placed in a way to maximize the margin to 
the nearest data points from the two classes (Figure 2). However, real data is not usually linearly separable, thus, 
the notion of a kernel function was introduced. This feature enables casting the original data into a higher 
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dimensional space where the data points can be separable. The optimal hyper-plane is determined by a number 
of Support Vectors (SVs). The commonly used kernel functions are linear, polynomial, sigmoid and radial basis 
functions (RBF). 

Although, computational difficulties could rise from such operation in addition to the high risk of over-
fitting. Being an intuitive and theoretically well-founded technique, SVM introduced several parameters to 
reduce these concerns. Hence, this method was also extended to solve regression problems. The linear model in 
the high-dimensional space is given by: 

𝑓(𝐗,𝜔) = �𝜔𝑗𝑔𝑗(𝐗) + 𝑏
𝑝

𝑗=1

 

where 𝑔𝑗(𝐗), 𝑗 = 1, … ,𝑝 represent a set of nonlinear transformations and 𝑏 is the bias term. 

In addition to the type of the kernel function, another important parameter is the constant 𝐶 that 
optimizes the compromise between the model complexity and the degree of tolerance to deviations larger than 
the insensitive loss function 𝜖, which is the trade-off between maximizing the margin and minimizing the error 
rate. The good performance of SVM depends on the suitable setting of these 3 parameters. 

The parameter 𝐶 is also important for the best fit of the model and at the same time to avoid over-fitting 
problems. It depends on the amount of noise in the training data and it usually varies between 1 and 10. If it’s 
too small the algorithm will insufficiently fit the training data, on the contrary, if it’s too large the method will 
tend to over-fit the data. The parameter 𝜖, on the other hand, controls the number of SVs. The higher 𝜖, the 
lower the number of selected SVs. These parameters can only be optimized by analyzing the data and applying 
proper measures of fit and validation techniques. 

In this work, the SVM models were calculated using the LibSVM library written in C programming 
language and developed by Chih Chang and Chih-Jen Lin [186,187]. This library was implemented in MATLAB 
to be coupled with the GAs for the variable selection and modeling steps.  

 
Figure 2: Choosing the hyperspace with the optimal margin 
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6. Goodness of fit measures and validation methods 
 

 

 

 

One of the most important features of a QSAR model is its predictive ability and validity. This condition is also 
foreseen by the fourth OECD principle for the use of QSARs in regulatory assessment of chemicals. According 
to the OECD guidance, the validation is defined as: “…the process by which the reliability and relevance of a particular 
approach, method, process or assessment is established for a defined purpose” [188].  

Care should be taken while assessing the validity of QSAR models in order to avoid the problem of 
over-fitting and provide predictive algorithms. The optimal model is the one showing the best balance between 
its complexity and the gain in performance without modeling the noise in the data [45,189,190]. The problem 
of over-fitting can be due to the bad choice of the modeling technique that doesn’t properly fit the studied 
endpoint or the use of a high number of descriptors with few molecules. Another main reason could be the 
failure in selecting the suitable descriptors for a given response. The improperly included variables may be inter-
correlated, by-chance correlated with the response or too many till capturing higher variance than necessary 
[191–194].  

6.1. Validation methods 

As a matter of fact, once a model has been developed, regardless of its type, it is crucial to investigate its 
predictive ability by means of proper validation methods.  

One of the widely used approaches for this purpose is to split the original data into a training and a test 
set. The test set is usually consisting of 20 to 25% of the whole dataset. This set of molecules is exempted from 
model calibration process, and it is used to verify the predictive ability of the calibrated model. The model’s true 
predictive ability is evaluated according to the statistics obtained from the external test set. Testing the model 
using an external validation set is strongly required if the model has shown a significant predictive performance 
during the modeling process.  

Another method to evaluate the model predictive performances is Cross-Validation (CV). There are two 
varieties of this technique; the Leave-One-Out (LOO) and the Leave-Many-Out (LMO). 

The LOO approach consists of leaving out one of the compounds in the training set, fitting the model 
with the remaining compounds and then predicting the left-out one using the built model. This procedure is 
repeated for all the compounds in the training set using the same selected descriptors. The statistics are later 
calculated using the predicted values.  

Since LOO is omitting only one compound at a time, it provides over optimistic predictions [195]. This 
problem can be solved by applying the more robust LMO approach [196]. Albeit its robustness, this method is 
computationally expensive and irreproducible because it depends on the random selection of the left-out 
compounds. The 𝑘-fold cross-validation is a valid alternative, where 𝑘 is the number of times one group is left 
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out and predicted using the fitted model. The commonly considered values of 𝑘 are 5 and 10 with portions 
equal to 20% and 10%, respectively. Usually, the 𝑘 groups are divided using venetian blinds or contiguous 
blocks techniques: 

- in venetian blinds method, the test set consists of selecting every 𝑘 -th sample in the dataset, starting at 
the first sample.  

- the contiguous blocks test set consists of selecting the 𝑛/𝑘 samples in the dataset, starting at the first 
sample. 

6.2. Regression parameters 

The quality of a model can be evaluated using two groups of statistical indices:  

- the goodness of fit parameters measuring the fitting ability; 
- the goodness of prediction parameters measuring the true predictive ability of a model; these are 

related to the reliability of prediction in the validation step.  

Only the parameters used in this work are presented in this section. However, several indices have been 
proposed in literature [76]. 

6.2.1. Goodness of fit indices. 

These indices are used to measure the degree to which the model is able to explain the variance contained in 
the training set. The coefficient of determination 𝑅2 is one of the most used parameters. It is the square 
multiple correlation coefficient given by: 

𝑅2 =
∑ (𝑦�𝑖 −𝑛
𝑖=1 𝑦�)2

∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=1

 

where 𝑦� is the estimated response and 𝑦� is the average observed response over the 𝑛 training compounds. 

𝑅2 ranges from 0 to 1. The higher this parameter is, the more fitted the model. 

The second mainly used parameter is the Root Mean Square Error (𝑅𝑀𝑆𝐸) calculated as following: 

𝑅𝑀𝑆𝐸 = �∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=1

𝑛
 

6.2.2. Goodness of prediction indices. 

These parameters are used in the validation step. The most important one is the predictive squared correlation 
coefficient 𝑄2. Different ways of calculating this parameter are available in the literature [197,198]. In this work, 
the following formula was considered: 

𝑄2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2
𝑛𝐸𝑋𝑇
𝑖=1 𝑛𝐸𝑋𝑇⁄
∑ (𝑦𝑖 − 𝑦�)2𝑛𝑇𝑅
𝑖=1 𝑛𝑇𝑅⁄

 

where 𝑛𝐸𝑋𝑇 is number of test compounds, 𝑛𝑇𝑅 is the number of training compounds. 

The second parameter commonly used is the Root Mean Square Error in Prediction (𝑅𝑀𝑆𝐸𝑃) 
calculated as follows: 
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𝑅𝑀𝑆𝐸𝑃 = �
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=1

𝑛𝐸𝑋𝑇
 

6.3. Classification parameters 

The performance of classification models was evaluated using statistical indices proposed in literature [76,199]. 
These indices are calculated from the confusion matrix which collects the number of samples of the observed 
and predicted classes in the rows and columns, respectively (Table 1).  

For a two-class dataset, the classification parameters are defined using the number of True Positives 
(𝑇𝑃), True Negatives (𝑇𝑁), False Positives (𝐹𝑃) and False Negatives (𝐹𝑁).  

Table 1: The confusion matrix in classification 

 Class A (predicted) Class B (predicted) 
Class A (observed) 𝑇𝑃 𝐹𝑁 
Class B (observed) 𝐹𝑃 𝑇𝑁 

The most important parameter that should be maximized during the modeling step is the Non-Error Rate 
(𝑁𝐸𝑅). It is usually expressed in percentage and given by: 

𝑁𝐸𝑅% =
(𝑆𝑛 + 𝑆𝑝)

2
 

where 𝑆𝑛 is the sensitivity and 𝑆𝑝 is the specificity. 

The Sensitivity (𝑆𝑛), also called the True Positive Rate (𝑇𝑃𝑅) or recall, determines the ability of a 
model to correctly predict the elements of a given class and calculated as: 

𝑆𝑛 ≡ 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The Specificity (𝑆𝑝), also called the True Negative Rate (𝑇𝑁𝑅), expresses the ability of the model to 
correctly reject the elements from a given class and defined as: 

𝑆𝑝 ≡ 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The Error Rate (𝐸𝑅) is also a significant parameter since it is the complementary value of 𝑁𝐸𝑅. Thus, it 
is calculated as following: 𝐸𝑅 = 100 −𝑁𝐸𝑅% 
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7. Applicability domain of models  
 

 

 

 

The validity of a QSAR model is not sufficient to consider it as adequate for regulatory purposes. General 
considerations are given in the REACH guidance indicate that it is essential for a QSAR estimate to be valid 
and applicable to the chemical of interest in order to assess its acceptability [46].  

 
Figure 3: The overlapping conditions for the adequacy of QSARs in regulatory purposes. 

This implies that several considerations should overlap in order to fulfill the adequacy condition of a 
QSAR model in regulatory assessing of chemicals. As shown in Figure 3, a QSAR model should be scientifically 
well founded and applied within its applicability domain to produce reliable predictions. If these results meet 
the regulatory field of interest, the model is adequate. 

According to the third OECD principle, a QSAR model should be associated with a defined domain of 
applicability. This includes limitations in terms of types of chemical structures, physicochemical properties and 
mechanisms of action. When a model is applied within the boundaries of its limitations, it is expected to give 
reliable estimates. Conversely, using it outside of its applicability domain could affect the accuracy of the 
predicted results.  

Since there is no unique mode of action to define the applicability domain, several methods have been 
proposed in the literature [200–202]. Depending on the used methodology for describing the descriptor based 
interpolation space, the suggested methods can be categorized in different groups. The range-based methods 
include the bounding box, PCA bounding box that define the AD in a univariate way by setting an interval for 
each variable. The geometric methods such as the convex hull set an external delimiter for the training set as 
the limit of the AD. Some of the commonly used centroid-based approaches make use of the Leverage, 
Euclidean, Mahalanobis and City Blok distances with a user defined threshold as a warning value for the AD.  
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Many other methods have been developed and used in QSAR studies: the 𝑘NN approach, the 
probability density distribution-based method, decision trees and the stepwise approach. Some of the above 
mentioned approaches have been discussed and a comparison study was conducted on different environmental 
datasets [203]. 

In this work, the mostly used approach to define the AD of the developed models was the Leverage 
approach. The leverages of a given descriptor matrix X are obtained from the Hat matrix H calculated as 
follows: 

𝐇 = 𝐗(𝐗T𝐗)−1𝐗T 

The diagonal values of H are the leverages of the different samples from the centroid of the dataset. 
According to this approach, the AD of a QSAR model is delimited by a threshold value [200,201]. If a test 
compound has a leverage value higher than the cut-off it will be considered as outside the AD, thus, associated 
with low reliable prediction. The user-predefined threshold is generally 3 ∗ 𝑝/𝑛 where 𝑝 is the number of 
descriptors plus one and 𝑛 is the number of samples in the training set. 
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8. Multi-criteria decision making in model selection 
 

 

 

 

In addition to a thoroughly prepared experimental data, the quality of QSAR model depend on several 
parameters. As described in the previous sections, the number and type of the crucial parameters vary 
according to the selected modeling method. In order to build a model with a good compromise between the 
complexity and the predictive ability, these parameters should be optimized simultaneously during the variable 
selection step. However, feature selection techniques usually optimize only one parameter such as 𝑄2 in cross-
validation for PLS regression. However, a reliable PLS model should also have a low number of LVs to avoid 
over-fitting problems. Moreover, a high number of outliers could affect the predictive ability of a model. Thus, 
ranking the models on the basis of only one parameter can be restrictive and could not give the best results. 

Since several criteria can be important for any modeling methodology, suitable techniques for 
multivariate optimization are required. In the field of Chemometrics, MultiCriteria Decision Making methods 
(MCDM) have been developed to deal with such problems [204–207]. These methods are able to perform 
multivariate rankings on the basis of Desirability and Utility indices, and make the optimal choice among the 
different possibilities. The Utility is calculated as an arithmetic mean of the parameters while the Desirability is 
defined their geometric mean. 

The Utility Ui of each ith alternative for the non-weighted and weighted cases are given by: 

𝑈𝑖 =
∑ 𝑡𝑖𝑗
𝑝
𝑗=1

𝑝
, 𝑈𝑖 = �𝑤𝑗𝑡𝑖𝑗

𝑝

𝑗=1

, 0 ≤  𝑈𝑖 ≤ 1 

where 𝑝 is the number of criteria 𝑡. 

The Desirability Di of each ith alternative for the non-weighted and weighted cases are given by: 

𝐷𝑖 = �𝑡𝑖1𝑡𝑖2 … 𝑡𝑖𝑝
𝑝  , 𝐷𝑖 =  𝑡𝑖1

𝑤1𝑡𝑖2
𝑤2 … 𝑡𝑖𝑝

𝑤𝑝 , 0 ≤ 𝐷𝑖 ≤ 1 

The weight constraint is: 

�𝑤𝑟 = 1
𝑝

𝑗=1

 

The weights are calculated using the method of normalized weights for ranked criteria [208,209]: 
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where rj is the jth criterion rank, k is a smoothing parameter and Q is defined as: 

𝑄 = �𝑟𝑗𝑘
𝑝

𝑗=1

= 𝑒𝑥𝑝 ��𝑘 ln�𝑟𝑗�
𝑝

𝑗=1

� 

A new approach for model ranking was developed during this study. It is based on the GAs for variable 
selection and exploiting the principle of MCDM methods by using the Utility and Desirability functions. The 
aim of this approach was to include all the relevant criteria in the variable selection process. 

This approach was applied on PLS for regression. An algorithm was implemented in MATLAB for the 
purpose of the study. The variable selection process was performed in multiple double CV (dCV) in order to 
keep an evaluation set in each step [210]. Intuitively, the dCV is performed in two steps as explained in the 
algorithm. The included parameters for optimization were: Q2, the number of variables, LVs, R2for the double 
CV evaluation set and the number of outliers (nOutliers). This latter parameter is evaluated using the leverage 
approach as explained in Section II.7.  

Each criterion is independently transformed into an Utility/Desirability index. This step is performed by 
an arbitrary function which transforms the actual value 𝑓𝑖𝑗 of each 𝑖th alternative for the 𝑗th criterion into a 
value between 0 and 1 [209]. 

The proposed algorithm is the following: 

Repetition loop: GA runs: FOR r=1 to the total number nRUNS 

(1) Split all n objects randomly into SEGTEST segments (typ. 10). 

(2) Outer loop (dCV): FOR τ = 1 TO SEGTEST 

(a) Select nTEST molecules (1 segment) & nCALIB (the other segments) 

(b) Make GA on the nCALIB molecules (Inner loop: k-fold CV, typ. 5) 

- Select a set of descriptors (nVars) optimizing {D,U}=f(Q2, LVs) 

(c) Make PLS models on the nCALIB molecules, predict the nTEST and calculate R2Test. 

(d) Rank chromosomes according to {D,U}= f(Q2, LVs, nVars, nOutliers, R2Test).                                                                                        
 next τ dCV 

(3) Do Stepwise forward selection on the τ dCV according to the frequency of selection and rank models according 
to {D,U}= f(Q2, LVs, nVars).      next r run      

(4) Do final Stepwise forward selection on the nRUNS according to the frequency of selection and rank models 
according to {D,U}= f(Q2, LVs, nVars). 

After each GA run and in the final stepwise forward selection, the models were ranked using the Utility 
function because the Desirability appeared to be much restrictive. In fact, even if only one criterion is low, the 
overall desirability will be low as well. Also if the desirability of one criterion is equal to 0, the overall desirability 
will be 0. 
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1. Introduction 
 

 

 

 

According to the first OECD Principle, a QSAR model should be associated with a defined endpoint. In the 
regulatory context, “a defined endpoint” refers to any physicochemical property, biological activity or 
environmental effect that can be experimentally measured under specific conditions [44]. To ensure reliable 
predictions for the endpoint being modeled, the considered datasets should be self-consistent and generated by 
homogeneous experimental protocols. In addition, a QSAR model can be appropriately used for regulatory 
purposes when the test guidelines used to produce the modeled data are specified. However this is not always 
feasible, especially when different sources are combined or proprietary databases are used [44]. 

The transparency of the endpoint being predicted by a given QSAR model is an essential requirement in 
the assessment of the validity of the model, which is the intent of the first OECD Validation Principle. The 
predictions of a model can be considered as reliable if its endpoint is congruent with the regulatory endpoint 
under evaluation. Since the reproducibility of measurements is guaranteed by standardized guidelines, QSAR 
models based on harmonized test protocols are more likely to provide compliant estimations with the 
regulatory purposes requirements [39,44].  

 

Table 2: REACH regulatory endpoints associated with the OECD test guidelines. 

Category Endpoint 

Physicochemical Properties 

Melting Point 

Boiling Point 

Vapor Pressure 

Octanol/Water Partition Coefficient (logP) 

Water Solubility 

Environmental Fate 

Biodegradation 

Hydrolysis 

Atmospheric Oxidation 

Bioaccumulation 

Ecological Effects 

Acute Fish Toxicity 

Acute Daphnid Toxicity 

Alga Toxicity 

Long-term Aquatic Toxicity 
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Terrestrial Effects 

Human Health Effects 

Acute Oral Toxicity 

Acute Inhalation Toxicity 

Acute Dermal Toxicity 

Skin Irritation /Corrosion 

Eye Irritation/Corrosion  

Skin Sensitization  

Repeated Dose 

Genotoxicity 

Reproductive Toxicity 

Developmental Toxicity 

Carcinogenicity 

Organ Toxicity  

For regulatory assessment of chemicals within REACH, QSAR models are categorized according to their 
defined endpoints. The endpoints of interest to this regulation are collected in Table 2, where also the OECD 
test guideline is specified [44].  

In this work, Octanol/Water Partition Coefficient (logP) and two environmental fate endpoints 
(Biodegradation and Bioaccumulation) were considered. Experimental data for these endpoints were collected 
from reliable sources and therefore assumed to be produced by means of comparable protocols. The models 
were developed, validated and interpreted taking in consideration the five OECD principles according to the 
REACH regulatory requirements.  
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2. Octanol/Water Partition Coefficient 
 

 

 

 

The chemical interactions of a substance with its surroundings is a key feature for its environmental impact 
assessment, hence, it is one of the requirements of REACH regulation [211]. The behavior and fate of a 
chemical substance are mostly depending on its physicochemical properties [212]. In absence of reliable 
experimental data, non-testing methods such as QSPR estimations can be used to provide such required 
information about chemicals [211]. 

The octanol/water partition coefficient (kow), usually expressed in log values (logkow or logP) is a key 
parameter in environmental assessment of chemicals since it is related to lipophilicity/hydrophobicity [213–
217]. It is used as the basic predictor in many estimation models for water solubility, bioavailability, 
bioaccumulation, toxicity/ecotoxicity and PBT assessment/screening [213,218–222]. In REACH regulation, 
providing a logP value is required for all tonnage bands of chemicals [39,211]. 

LogP is defined as the ratio of the concentrations of a dissolved chemical in two immiscible phases, 
octanol and water, at the equilibrium [223]. Since temperature can affect the results, the measurements are 
typically carried out at 25 °C. 

Owing to the large number of available experimental values, robust QSPR models can be developed for 
this property. When used within their domain of applicability, validated QSPR estimations for logP can be 
considered in regulatory purposes as more reliable than a single test [44].  

Several QSPR models using different methods have been developed and published in the literature 
[219,224–228]. These models and their results have been compared in several reviews [229,230]. 

A comparison study of different methods for predicting logP was published by Mannhold and Dross 
[230]. Later, an exhaustive overview of different methods for estimation of octanol/water partition coefficient 
as well as other physical properties was published by Katritzky et al. [229]. 

There are two OECD test protocols for logP, OECD Guideline 107 and OECD Guideline 117 [44]. 
These protocols consider the neutral, undissociated form of a chemical. However, the dissociation of ionisable 
substances in an environmentally relevant pH could affect their physicochemical properties and, subsequently, 
their environmental fate. As a result, the partition coefficient of the dissociated form is a different 
physicochemical property, referred to as logD, and could differ from its neutral form by a factor of 4 to 5 
orders of magnitude [231].  

In this work, two datasets, with a significant number of molecules, were considered for QSAR modeling. 
Each dataset was processed separately using appropriate tools and following different modeling strategies.  
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2.1.  Case study 1: the logP-1000 contest 

The aim of this study was to participate in a challenge that aimed to develop a predictive model for logP. The 
logP-1000 contest started with a first dataset of 1000 compounds selected from the ZINC database [232–234]. 
This initial set was later extended to 1000 clusters of about 5 compounds each. The total of 5200 compounds 
with unknown logP values will be predicted by the models of the participating groups. In addition to this 
contest dataset, the organizing group provided also a dataset to be used for fitting the models. The provided 
dataset consisted of 17233 compounds downloaded from the OCHEM online database [235]. 

2.1.1. Data set up and curing 

The information provided for the compounds of the dataset included the CAS-RN, the chemical name, the 
SMILES code, the logP experimental value and the internal identifier of the OCHEM database. The dataset 
was initially analyzed in order to check the presence of erroneous structures. 

The first analysis was carried out by means of ChemBio-Office (CambridgeSoft) and revealed 454 
molecules associated with wrong structures. In particular, 204 compounds had wrong covalent bonds and 363 
compounds had exceeding valence for Nitrogen. The dataset contained also 1648 duplicates and 1727 
tautomers. 

Using DRAGON software, the unusual covalent bonds of the previously detected 204 compounds were 
disconnected by converting covalent bonds between Nitrogen and halogens (X) into the disconnected ionic 
form N+ X-. Also covalent bonds between Sodium and Oxygen as well as Potassium and Oxygen were changed 
into the ionic forms Na+ O- and K+ O- respectively. 

Then, the 454 wrong entries were checked using the following online databases: Pubmed Substance, 
Chemspider and ChemIDPlus-Advanced. First, the CAS-RN was used, if nonexistent or invalid then the name 
of the molecule was checked for full match. 219 structures were corrected and 235 were deleted. The final 
dataset consisted of 16998 compounds. 

2.1.2. Molecular descriptor calculation and selection 

An initial set of 3130 molecular descriptors was calculated using DRAGON (version 6) [105]. The considered 
descriptors were related to 9 DRAGON descriptor blocks: atom pairs, atom centered, atom type, CATS, 
topological, constitutional, functional groups, molecular properties and Muriguchi parameters. 

Constant, near constant and highly correlated descriptors were processed as explained in Section II.4.  

Then, a univariate correlation analysis with the response (logP) was carried and descriptors with absolute 
value of correlation coefficient lower than 0.1 were removed. A final set of 1062 descriptors was considered for 
the modeling step. 

The screened dataset was randomly divided into training (12482) and test (4493) sets, representing 74% 
and 26% of the whole dataset, respectively. 

The Genetic Algorithms (GAs) and Stepwise Forward Selection (FS) were used to select the appropriate 
molecular descriptors for the studied response. The regression models were developed by means of PLS and 
𝑘NN for regression. The number of Latent Variables (LVs) for PLS and the number of nearest neighbors for 

𝑘NN were selected maximizing the model’s predictive ability 𝑄2. Cross-validation was performed with 5 
cancellation groups divided using the venetian blinds method (details in Section II.6.1). 
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2.1.3. Results and discussion 

Before the proper QSAR modeling, the relationship between molecular weight and logP was analyzed. Most of 
the compounds demonstrated molecular weights ranging from 150 to 350 g/mol and logP values from 0 to 4. 
The distribution of molecular weights and logP values can be divided in three intervals: 

- 319 compounds with molecular weights ranging from 0 to 100 g/mol related to the lowest logP values;  
- 8396 compounds with molecular weights of 100 to 300 g/mol associated with logP values ranging 

from 0 to 4; 
- 3767 compounds with molecular weights higher than 300 g/mol associated with the highest logP 

values.  

The observed correlation between the logP values and the molecular weights (Figure 4) was exploited in 
order to build a local model using the mentioned molecular weight ranges. Thus, a PLS model was built using 
the molecules contained in each of the three intervals.   

 

Figure 4: The correlation between logP and the molecular weights. 

Molecular descriptors were selected by means of GAs and the calibrated models were then validated 
using the test set. The best results of the different modeling methods (in fitting, cross-validation and test) as 
well as the number of selected molecular descriptors are collected in the Table 3. 

Table 3: QSPR models for logP using different modeling methods. 

Method No. 
Desc. 

LVs/
 𝒌 R2 𝑸𝟐CV 𝑸𝟐test RMSEC RMSEP 

CV RMSEP 

GA_PLS_1 255 20 0.85 0.84 0.86 0.75 0.78 0.75 
GA_PLS_2 156 20 0.85 0.84 0.85 0.77 0.80 0.78 

FS_PLS 65 15 0.84 0.84 0.85 0.78 0.78 0.77 
PLS_MW 65 15 0.86 - 0.86 0.74 - 0.74 

𝑘NN_1 255 5 - 0.86 0.88 - 0.74 0.68 

𝑘NN_2 30 5 - 0.84 0.85 - 0.80 0.75 

𝑘NN_3 65 5 - 0.86 0.87 - 0.74 0.71 
No. Desc.: number of descriptors. 
GA_PLS: GA coupled with PLS. 
FS_PLS: stepwise forward variable selection coupled with PLS. 
PLS_MW: GA coupled with PLS using the 3 intervals of molecular weights. 

The overall performance of the calibrated models was generally satisfactory,  and overfitting was likely 
limited, if present, since performance in fitting, cross-validation and on the external test set was comparable. 
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The relatively high number of descriptors in these models can be due to the fact that such a big dataset may 
cover a wide range of structurally diverse chemicals. Thus, a high number of descriptors and LVs for PLS were 
required to explain most of the variance. 

Two of the commonly used QSPR models for predicting logP were developed by Muriguchi (MlogP) 
and Ghose-Crippen (AlogP) [236,237]. These models were calculated using DRAGON software and used to 
benchmark the predictive ability of the new proposed models towards the logP-1000 contest dataset of 5200 
chemicals.  

Table 4: Statistics of MlogP and AlogP for the training and test sets. 

Model 𝑹𝟐 RMSEC 𝑸𝟐test RMSEP 

MlogP 0.68 1.10 0.68 1.10 

AlogP 0.80 0.86 0.81 0.86 

The performance of AlogP and MlogP models are collected in Table 4. It is clear that AlogP performed 
better than MlogP for both training and test sets. However, the predictive ability of the new proposed models, 
summarized in Table 3, is higher than these two models from the literature. The correlation between the 
predictions obtained from AlogP and MlogP for the whole dataset (training and test set) is 0.88, while their 
correlation on the logP-1000 contest dataset decreased to 0.69. The difference between these two correlation 
values was unexpected and could indicate structural difference between the dataset used for fitting the models 
and that to be predicted by them. 

Three of the developed models (GA_PLS_2, FS_PLS and 𝑘NN_3) were selected to predict logP for the 
logP-1000 contest dataset, taking into consideration the compromise between their performance and 
complexity (number of selected molecular descriptors). These models were benchmarked by calculating the 
correlations coefficients between their respective predictions on the test set and the contest dataset and those 
predictions obtained from AlogP and MlogP models. The obtained results are summarized in the Table 5. 

 

Table 5: Benchmarking the predictions of the selected models. 

Models  
GA_PLS_2 FS_PLS 𝒌NN3 

Test 
set 

Contest 
data 

Test  
set 

Contest 
data 

Test  
set 

Contest 
data 

MlogP 0.83 0.59 0.88 0.81 0.81 0.52 
AlogP 0.89 0.62 0.94 0.88 0.87 0.60 

According to Table 4, the predictions of the selected models showed higher correlation with AlogP than 
MlogP. This fact can be considered as proof of the reliability of the selected models since AlogP was 
considered to be more reliable according to Table 3. 

2.1.3. Conclusion  

The developed logP models showed similar results. In general, the three final selected models demonstrated 
better predicting ability than the two classical logP models (AlogP and MlogP), which were used for 
benchmarking the predictions on the logP-1000 contest dataset. 

The 𝑘NN model showed the best statistics for the training and test sets. The comparison study on the 
contest data, based on the correlation with AlogP and MlogP indicated better results with the PLS models. In 
particular, FS_PLS model showed the highest correlation with AlogP which is considered to be better than 
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MlogP. However, it was noticed that the benchmarking models showed low correlation considering the 
predictions for the contest dataset. This could be due to the fact that the logP-1000 dataset includes several 
chemicals that are structurally different from those used to fit and validate the models. Consequently, 
considering both AlogP and MlogP in the evaluation of the predictions on the contest dataset, the FS_PLS 
could be selected as the best predictive model. 

2.2.  Case study 2: modeling PHYSPROP dataset for logP 

Unlike case study 1 where the data source was constrained, this second study on logP focused more on the 
dataset preparation in order to have a curated dataset for modeling. Moreover, the previously introduced 
MCDM variable selection algorithm (Section II.8) was applied to select the best models. Since most of the 
datasets available in the literature may contain wrong entries, attention was paid to data screening and curation. 
Then, the modeling step was carried out in order to propose a QSAR model with a good compromise between 
the predictive ability and complexity. 

2.2.1. Data set up and curing 

The dataset was downloaded from the US-EPA (Environmental Protection Agency) website [63,238]. This 
dataset was originated from the PHYSPROP database [239,240]. The same dataset was used for the 
development of KOWWIN, the EpiSuite’s model for estimating logP [227]. 

The original dataset consisted of 13’445 compounds. For each compound, the CAS-RN, the SMILES 
structure, the chemical name and the experimental value are provided with the corresponding bibliographic 
reference. However, not all compounds  were associated with a valid CAS-RN since 1872 compounds were 
associated with a generic internal identifier that has the same number of digits as a CAS-RN. 

The data curation was performed using different tools in order to prepare a good quality dataset for 
modeling purposes. The software dProperties was used to carry out the first check [136]. Since this tool 
revealed 187 erroneous SMILES structures, further investigations were needed. The data-mining environment, 
KNIME was used to set-up a workflow which allowed different automatic checks of the dataset entries [69]. 
The developed workflow (Figure 5) was used to run a series of queries through the web-services of the online 
databases ChemSpider and CIR [73,241].  

 

Figure 5: The KNIME workflow used to prepare the dataset. 

The available identifiers for each compound were used in a combined way. The performed queries are 
listed from the most to the less restrictive:  

- 5524 compounds were found to match the CAS-RN, SMILES and chemical names. 
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- 6178 compounds were found to match the CAS-RN and the chemical names. This list overlaps with 
the previous one and adds 662 compounds satisfying only the criteria of the second query. 

- 6893 compounds were found to match the CAS-RN and SMILES. This list overlaps with the previous 
one and adds 1210 compounds. 

- 6566 compounds were found to match the SMILES and chemical names. This list overlaps with the 
previous one and adds 941 compounds. 

- 4168 compounds found to match the SMILES and chemical formula were added to the previous list. 

The resulting dataset consisted of 12505 molecules with checked molecular structures. The obtained 
SMILES were used to retrieve the missing CASRNs from ChemSpider database and 407 valid identifiers were 
found. 

79 disconnected structures were removed from the dataset, thus, 11’426 compounds remained for 
molecular descriptor calculation and modeling. 

2.2.2. Molecular descriptors calculation 

DRAGON software was used to calculate 2469 molecular descriptors [105]. In order to build easily 
interpretable models, only 2D descriptors were considered. The calculated descriptors belong to different 
DRAGON blocks: Constitutional indices, Ring descriptors, Topological indices (except E-state indices sub-
block), Walk and path counts, Connectivity indices, Information indices, ETA indices, Functional group 
counts, Atom Centered fragments, Atom-type E-state indices, CATS 2D and 2D Atom Pairs.    

Then, the number of descriptors was reduced by screening the descriptors on the basis of constant, near 
constant and highly correlated values as explained in Section II.4. The remaining 1167 descriptors were saved 
for the variable selection and modeling step. 

2.2.3. Results and discussion 

A test set of 3110 compounds corresponding to 25% of the whole dataset was selected using the venetian 
blinds technique. The remaining 9316 compounds were considered as training set on which the variable 
selection step was performed. 

The previously described MCDM variable selection based on the GA coupled with PLS was performed 
on the training set. In each run, 10 double Cross-Validations (dCV) of 5 cancellation groups were performed 
while the 10% of the training set was left out as a validation set for the best model of the dCV. 

During the GA evolutions, 5 parameters were optimized, the inner 𝑄2 5-fold Cross Validation (5-f CV) 

and outer 𝑄2 Cross Validation (dCV) were maximized while the number of variables, the number of LVs and 
the number of outliers were minimized as explained in Section II.8. The rankings of these 5 criteria and their 
corresponding weights are listed in Table 6. 

Table 6: Ranks and weights of the considered parameters. 

 𝑸𝟐 5-f CV 𝑸𝟐 dCV 
Number of 
descriptors 

LVs 
Number 

of outliers 
Ranking 1 2.5 3.5 3.5 4.5 
Weight 0.683 0.171 0.076 0.043 0.027 
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During the stepwise forward selection performed after each run and at the end of the procedure, 3 
parameters were optimized: 𝑄2 5-fold CV, the number of variables and the number of LVs. The corresponding 
rankings of the 3 criteria used for calculating their weights were 1, 2.5 and 2.5, respectively. The models were 
ranked on the basis of the score calculated by the Utility function (U). The Desirability function (D) was also 
reported. The smoothing parameter k for calculating the weights was equal to 2. 

The maximum number of descriptors and LVs was fixed to 60 and 10, respectively. During the inner 5 
fold CV, all the allowed LVs were tested and the model showing the best compromise between the used LVs 

and 𝑄2 according to the U score was retained. 

Since the calculations were computationally expensive due to the big training set and the high number of 
descriptors, the variable selection procedure was performed in 3 steps. The algorithm was first executed for 20 
runs in order to reduce the list of descriptors. In the second step, 331 retained descriptors were subject to 20 
runs to select the most pertinent subset. Finally, the 150 descriptors which were the most frequently selected 
during the second step were included in the last selection step of 20 runs. 

Table 7 summarizes the optimized models obtained during the 10 dCVs performed in the first run of the 
GA and their corresponding parameters used to calculate the U score. The descriptors which were selected at 
least twice in the 10 models were included in the stepwise forward selection according to their frequency of 
selection. The obtained models from this first run are summarized in Table 8. 

Table 7: The 10 dCV performed during the first GA run of the third step. 

dCV U 𝑸𝟐 5-f CV 𝑸𝟐 dCV No.  descs. LVs No. outliers 
dCV1 0.78 0.81 0.78 39 4 25 

dCV2 0.79 0.82 0.81 41 4 48 

dCV3 0.78 0.79 0.78 36 3 34 

dCV4 0.76 0.76 0.77 33 3 33 

dCV5 0.79 0.83 0.84 46 5 30 

dCV6 0.79 0.81 0.78 34 4 46 

dCV7 0.78 0.80 0.79 38 3 50 

dCV8 0.79 0.82 0.84 40 5 27 

dCV9 0.78 0.81 0.82 39 4 28 

dCV10 0.78 0.80 0.80 34 4 34 

Model M6 had the highest U score and was, therefore, retained as the best model of the first run. Table 8 
reports also the Desirability (D) score that showed the highest value for the same model as U. Since the 
maximum of the descriptors to be included in the models was set to 60, models with descriptors exceeding this 
number had a D score equal to 0. 

Table 8: Nine models obtained by means of stepwise forward selection performed after the 10 dCVs of the 
first GA run. 

Parameter M1 M2 M3 M4 M5 M6 M7 M8 M9 

Descriptors 1 2 3 4 7 15 33 64 111 

𝑄2 0.16 0.28 0.43 0.45 0.48 0.79 0.81 0.83 0.84 
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Selection 10 9 8 7 6 5 4 3 2 

LVs 1 1 1 2 2 2 4 4 4 

U 0.36 0.45 0.56 0.57 0.58 0.81 0.77 0.73 0.73 

D 0.25 0.38 0.52 0.54 0.56 0.81 0.76 0 0 

The same procedure was repeated for 20 runs and the best models were saved. Figure 6a showed the 
frequency of selection of descriptors, while Figure 6b showed the 𝑄2 CV and the corresponding U score of the 
20 obtained models. From these descriptors, those having a frequency of selection of at least 2 over 20 were 
included in the last stepwise forward selection.   

 

Figure 6:  The frequency of descriptors’ selection during 20 runs (a) and the obtained models (b) and their parameters 𝑸𝟐 (red 
points) and U scores (blue points). 

According to Table 9 and Figure 7, the best model resulting from the last stepwise forward selection is model 
M16 that is associated with the highest U score. It represents the best compromise between performance and 
complexity since it included 17 descriptors and only 2 LVs for a 𝑄2 CV equal to 0.8. 

 

a 

b 
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Figure 7: The evolution of 𝑸𝟐 (red line) and U (blue line) during the final Stepwise forward selection. The histogram represents 
the frequency of selection of the descriptors in percentage over the number of total runs. 

All the descriptors of M16 were included at least 7 times in the best models of the 20 GA runs (Table 9).  

Table 9: Evaluation of models resulting from the stepwise forward selection. 

Parameter 
M 
10 

M 
11 

M 
12 

M 
13 

M 
14 

M 
15 

M 
16 

M 
17 

M 
18 

M 
19 

M 
20 

Desc. 4 5 6 7 9 11 17 18 23 26 41 
𝑄2 0.45 0.47 0.47 0.53 0.77 0.77 0.80 0.79 0.79 0.80 0.83 
Nb. Select. 20 19 13 12 10 9 7 6 5 4 3 
LVs 2 2 2 2 2 2 2 2 2 2 3 
U 0.57 0.58 0.58 0.63 0.80 0.80 0.81 0.80 0.79 0.79 0.77 
D 0.54 0.56 0.55 0.61 0.80 0.80 0.80 0.79 0.79 0.79 0.75 
Desc.: the number of descriptors. 
Nb. Select.: the number of selection of the added descriptors in the 20 runs. 

The selected descriptors, listed in Table 10, are simple 2D descriptors encoding information about the 
size of molecules, functional groups and fragments which can be related to the lipophilicity of chemicals.  

Table 10: The molecular descriptors included in the model M16. 

Symbol Description Block 

B07[C-X] Presence/absence of C - X at topological distance 7 2D Atom Pairs 
B05[C-X] Presence/absence of C - X at topological distance 5 2D Atom Pairs 

H-046 H attached to C0(sp3) no X attached to next C 
Atom-centered 
fragments 

O-058 =O 
Atom-centered 
fragments 

C-006 CH2RX 
Atom-centered 
fragments 

C-001 CH3R /CH4 
Atom-centered 
fragments 

O-056 alcohol 
Atom-centered 
fragments 

CATS2D_
01_LL 

CATS2D Lipophilic-Lipophilic at lag 01 CATS 2D 

nX number of halogen atoms 
Constitutional 
indices 

nHM number of heavy atoms 
Constitutional 
indices 

RBN number of rotatable bonds 
Constitutional 
indices 

nHDon number of donor atoms for H-bonds (N and O) 
Functional 
group counts 

nHAcc number of acceptor atoms for H-bonds (N,O,F) 
Functional 
group counts 

nCbH number of unsubstituted benzene C(sp2) 
Functional 
group counts 

nCb- number of substituted benzene C(sp2) 
Functional 
group counts 
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nBnz number of benzene-like rings 
Ring 
descriptors 

PCD 
difference between multiple path count and path 
count 

Walk and path 
counts 

The selected best model was finally validated by means of the external test set that was not used during 
the modeling step. The regression performance of this model in fitting, CV and prediction on test set are 
summarized in Table 11. 

Table 11: Statistics of model M16. 

Fitting 5-fold CV Test 

𝑹𝟐 RMSEC 𝑸𝟐 RMSECV 𝑸𝟐 RMSEP 
0.80 0.82 0.80 0.82 0.81 0.80 

On the basis of the results shown in Table 11, model M16 can be considered to be robust since the statistics in 
fitting, cross validation and test are comparable. 

The applicability domain of the model was investigated by means of the leverage approach. The number 
of outliers detected in the test set was 86. These compounds did not affect the statistics of the model. This low 
number of molecules outside the AD could be a result of the optimization of the number of outliers during the 
modeling step. Consequently, it can be concluded that the selected descriptors are an optimal subset to cover a 
wide range of the chemical space of the training set.  

2.2.4. Conclusion 

The developed MCDM-GA algorithm was able to select the best subset of descriptors by optimizing all the 
important parameters of the PLS method in a weighting scheme. The performed procedure leaded to a QSPR 
model with good compromise between the performance and the complexity. The utility of the final stepwise 
selection according to the frequency of the descriptors is to include all the gathered information from the 
different GA runs.  

Although the size of the dataset and the high variance it contained, the statistics of the built model 
were satisfactory for a global model. In comparison with the first study in the framework of the logP-1000 
contest (see Section III.2.1), the selected final model required a much lower number of descriptors and latent 
variables for a small difference in the predictive ability.  
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The bioaccumulation of a chemical substance in aquatic organisms is a crucial information for understanding its 
environmental behavior. The increase of concentration of a chemical in the tissues due to its accumulation over 
long term exposure may cause toxic effects and transfer through the food web leading to biomagnification.  

Consequently, for REACH it is a relevant information at all supply levels and it is a requirement for 
substances manufactured or imported in quantities of 100 ton/year or more. This information is also used in 
chemical safety assessment and food chain exposure as well as PBT classification [242]. For these reasons, 
REACH encourages the establishment of bioaccumulation data although below the requirement tonnage and 
the use of prediction techniques such as QSARs as alternatives to animal testing. 

3.1.  Definitions  

In the literature, there are several valid definitions describing the accumulation of chemicals in biota. In 
common terms, it is the result of the 4 phases a substance goes through in an organism: absorption (uptake), 
distribution, metabolism and excretion (ADME). The elimination of chemicals in aquatic organisms is 
processed by diffusive transfer across intestinal walls and gill surfaces or biotransformation to more easily 
excreted metabolites [243,244].  

Bioconcentration is a term referring to the accumulation of a substance in an aquatic organism. The 
BioConcentration Factor (BCF) of a chemical is the ratio of its concentration in the tissues of an organism over 
its concentration in water at the steady state as following: BCF = Co Cw⁄  

where BCF is the bioconcentration factor (L/kg), Cois the chemical concentration in the whole organism 
(mg/kg, wet weight) and Cwis the chemical concentration in water (mg/L). 

The BioAccumulation Factor  (BAF) is expressed as the ratio of the concentrations of a chemical in the 
organism tissues and the surrounding medium at equilibrium. It considers the uptake from all the 
environmental sources including water, food and sediments.  

The BioMagnification Factor (BMF) measures the accumulation of chemical substances via the food chain. It is 
expressed by the ratio of the concentrations of the substance in the predator and the prey: BMF = Co/Cd 

where BMF is dimensionless, Co is the steady-state chemical concentration in the organism (mg/kg), Cd is the 
steady-state chemical concentration in the diet (mg/kg). 

The concentrations should be expressed on a wet weight basis. They may also be normalized on the basis 
of the lipid content [242]. 
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3.2.  Assessing bioaccumulation by QSARs 

QSAR modeling is one of the most pertinent non testing methods accepted within REACH. Validated models 
for assessing bioaccumulation could provide relevant and reliable predictions on the chemicals of interest for 
the regulatory purposes. 

Different approaches for modeling the bioaccumulation factors have been proposed and reviewed in the 
literature [244–246]. 

The most important approaches can be divided in 2 categories according to the used descriptors: models 
based on experimental descriptors and models based on theoretical descriptors.  

In all cases, attention should be paid when merging datasets obtained from different experimental 
conditions because it can affect the model’s predictions [247]. 

3.2.1. QSAR models based on experimental descriptors 

LogP is commonly used as a simple estimator for bioaccumulation exploiting the correlation between BCF and 
the hydrophobicity of chemicals. The mechanistic interpretation of such relationship can be the analogy of the 
partition process between the lipid tissues and water as a passive diffusion through gill membranes in the 
aquatic organisms to its simulation in the logP experiments [242].  

Several logBCF/logP relationships have been proposed for specific chemical classes, such as polycyclic 
hydrocarbons, while many others were developed for diverse classes of chemicals [248–254]. Some of these 
models have already been used in regulatory applications of a number of chemicals [242]. 

Linear models based on logP provide acceptable estimations of the BCF for non ionic and slowly 
metabolized chemicals. However, since the range of logP values may be too large, this correlation is valid only 
for logP values varying from 1 to 6 and breaks down for more hydrophobic compounds [255]. The BCF values 
of such compounds are lower than the predictable limit of the correlation hypothesis and this is due to several 
reasons including the low aqueous solubility leading to low bioavailability, failure in reaching the steady state in 
the case of large molecules in addition to metabolism and degradation processes [247,255].  

More advanced approaches have been proposed to overcome this problem. Bilinear models and 
polynomial relationships have been developed for logP values ranging from 1.12 to 8.6 [252,256]. Another logP 
based approach was developed for the EpiSuite’s model BCFWIN. It suggested the use of different fragments 
for each group of chemicals in multi-logP ranges models with correction factors to improve the accuracy of the 
global model [215].  

However, the logP based predictions for high hydrophobic compounds remain uncertain for regulatory use 
[242]. 

Another experimental descriptor correlated with BCF is the aqueous solubility (S) which is highly, 
negatively, correlated with the previous descriptor. Although it is less extensively used than logP, several models 
for estimating BCF were based on this physicochemical property [257–260]. As for the previous experimental 
descriptor, BCF models based on S may have accuracy problems for specific chemical groups [260]. 

3.2.2. QSAR models based on theoretical molecular descriptors. 

The experimental descriptors, such as logP and S, were selected prior to the modeling procedure in order to fit 
a predefined mechanistic interpretation of the mode of action of the training set compounds. In addition to the 
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explained drawback of such hypothesis that could not be valid for some groups of chemicals, these approaches 
are facing another problem which is the lack of experimental input data for the structures to be predicted. 

To overcome these limitations, the use of theoretical molecular descriptors which can be calculated for 
any chemical structures was proposed in the literature. Using statistical methods, different classes of molecular 
descriptors were correlated with the bioaccumulative potential of chemicals including molecular connectivity 
indices, solvation energy, molecular fragments and quantum chemical descriptors [261–265].   

Theoretical descriptors avoid the problem of variability encountered with experimental descriptors. 
However, the models proposed in literature for mixed groups of chemicals are not always associated with a 
defined applicability domain which is a requirement for the regulatory applications [44]. 

3.3.  Case study: QSARs for assessing bioaccumulation 

In order to comply with the regulatory requirements for the assessment of the environmental behavior of 
chemicals, cautious approaches are needed. The lack of input data can be avoided by the use of theoretical 
descriptors, which are independent of any experimental testing.  

The aim of this study was to develop theoretical descriptors-based QSAR models for the assessment of 
bioaccumulation. The models were specifically built for the chemical group of interest to avoid any 
extrapolation of the applicability domain. 

3.3.1. Polybrominated diphenyl ethers (PBDEs) 

During the last decades, Polybrominated diphenyl ethers (PBDEs) were the most commonly used group of 
brominated flame retardants (BFRs). These chemicals were used in textile and electrical equipment industries as 
additives to polymers and resins [266,267]. Since they are not bonded to plastics, these pollutants are easily 
released to the environment during the manufacture phase, while the consumers are using the products and 
continue to leak out of the wastes that constitute the major diffuse source of pollution [267].  

PBDEs are known for their long range atmospheric transport, in fact, they are usually detected in 
different geographical regions distant from their original sources [268]. Because of their toxicity, persistence and 
potential for bioaccumulation these pollutants were included in the OSPAR list of chemicals for priority action 
and some of them were added to the list of Stockholm convention for POPs [267,269]. 

Depending on the number and positions of the bromine atoms on the two phenyl groups, there are 209 
possible congeners. In a similar way as for Chlorobiphenyls (CBs), the PBDE congeners are numbered 
according to the International Union of Pure and Applied Chemistry (IUAPAC) nomenclature. Similar toxic 
properties have also been notices between CBs and PBDEs [270–272]. However, the second group of 
chemicals are more lipophilic than their corresponding chlorinated compounds [273]. 

3.3.2. Results of PBDEs bioaccumulation models 

The aim of this study was to assess the bioaccumulation of PBDEs by means of QSAR modeling [103]. 
However, bioaccumulation is a complex biological and environmental procedure involving a multitude of 
factors. Hence, modeling such an endpoint can be compromised by the possible biotransformation of these 
compounds. In this work, attention was paid to the metabolism of some BDE congeners by debromination 
which can affect the reliability of the predictions. 
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The modeling procedure of this study was achieved in 3 steps corresponding to the 3 factors (BCF, BAF 
and BMF), which are usually used to assess bioaccumulation. Different regression methods were applied and 
several models were compared. For each one of the 3 factors, the model presenting the best compromise 
between performance and simplicity was selected. Since the aim of the study was to propose reliable models for 
a maximum number of BDEs, much attention was paid to the applicability domain of the developed models. 
The complete study can be found in the published article provided in the publication Mansouri et al.[103]. 
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The transformation of a chemical substance in the environment by degradation is an important process 
influencing the long term exposure to pollutants. The degraded chemical can give stable and/or toxic products. 
Hence, understanding this process leads to better risk assessment of adverse effects on biota. Degradation is 
abiotic or non-biological when it involves only physicochemical reactions. While biotic degradation is a 
biological process known as biodegradation and can occur in aerobic or anaerobic conditions depending on the 
presence/absence of oxygen. 

Information on biodegradability of chemicals may also be used in classification and labeling within the 
persistency assessment (PBT/vPvB). In the literature, there are several experimental datasets for degradation 
rates of chemicals. The most applicable experimental conditions for regulatory purposes are based on the 
standardized OECD guidelines such as OECD 301, OECD 303, OECD 111, OECD 308 and OECD 309. 

Within the context of REACH, biodegradability is an endpoint of high interest for the regulation of 
chemicals [274]. Starting from a volume of production of 1 ton/year, the registration dossier should include 
information on the ready biodegradability of the substance since the exposure potential increases with the 
volume [274]. However, independently from the tonnage trigger, all sources of information can be considered 
for the risk characterization including non-testing predictive methods such as QSARs [274]. 

4.1.  QSARs for assessing biodegradability of chemicals. 

Biodegradability can be computationally assessed in a quantitative or a qualitative way. Several models have 
been proposed in the literature for both types. A comprehensive review of biodegradability models was 
published in the literature [275]. Most of these models were derived from a dataset consisting of 894 
compounds assessed by the Japanese Ministry of International Trade and Industry (MITI). 

The EpiSuite’s probability program BIOWIN is one of the commonly used tools that provide 
estimations of the biodegradability under aerobic conditions with mixed cultures of microorganisms [276]. 

CATALOGIC is a less known quantitative model for assessing biodegradability based on a mechanistic 
approach. It predicts the Biological Oxygen Demand (BOD) and the microbial biodegradation CO2 production. 
It provides also an attempt to the metabolic pathways and the plausible biodegradation products that may arise 
[277]. 

TOPCAT, which is a commercial suite for toxicology predictions, also includes a module for quantitative 
assessment of aerobic biodegradability. It consists of 4 models applicable on specific classes of chemicals [278]. 
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The list can be extended to several other models such as the commercial software MULTICASE for 
ecotoxicity and TOXTREE which is a free decision tree based tool [279,280]. Both of these models are based 
on molecular fragments and structural alerts. 

4.2. Summary of the published study on biodegradability 

The aim of this work was to apply advanced modeling methods in order to build QSAR models with high 
predictive ability to contribute to the implementation of REACH regulation. The used classification methods 
were: 𝑘NN, PLSDA and SVM as well as consensus modeling. Attention was paid to the screening and 
preparation of the dataset for the modeling steps. The study was extended by an analysis of the used molecular 
descriptors and their relationship with the modeled endpoint, based on information retrieved from the 
literature. In particular, the newly used molecular descriptors for modeling biodegradability, such as the matrix-
based descriptors, were further explained by means of simple MLR models involving classical interpretable 
descriptors encoding information such as molecular branching and size [102]. 

More details can be found in the published article of the study provided in the publication Mansouri et 
al. [102]. 

4.3.  Substructural keys for predicting biodegradability 

This study aimed to evaluate the ability of some substructural descriptors to predict the  biodegradability. More 
details on the used dataset for this purpose can be found in the published article Mansouri et al. [102].  

This QSAR study used only binary descriptors based on several structural keys calculated by PADEL 
and SubMat (Table 12). For this purpose, a 𝑘NN routine using binary descriptors was implemented in 
MATLAB. The similarity indices Jaccard-Tanimoto (JT) and Consonni-Todeschini (CT4) were used for 
calculating the binary distances (1 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦) [281]. The best QSAR models obtained in this first step are 
summarized in Table 10. All models were validated with 5 cancellation groups and then using the test set. The 
classification performance of the models was evaluated by means of error rate, class specificity (Sp, correctly 
predicted ready biodegradable) and sensitivity (Sn, correctly predicted non ready biodegradable). The statistics 
of the best obtained models were comparable in cross-validation (5f-CV) and different for the test set. 
However, the 166 MACCS keys calculated by PADEL seemed to have more accurate predictions on the test set 
with the lowest ER equal to 15.2%. Despite the amount of information encoded into the 4860 structural keys, 
Klekota showed average performance on CV and test set.   

The published models in the previously mentioned study based on the DRAGON descriptors performed 
better than the different used substructural keys [102]. 

Table 12: The selected 𝒌NN models using different combinations of structural keys and distance measures. 

Structural keys 
(number) 

Distance 𝒌 
5f-CV Test 

ER CV Sp Sn ER test Sp Sn 

Submat (1365) JT 10 0.196 0.754 0.854 0.184 0.708 0.925 

MACCS (166) JT 8 0.198 0.718 0.886 0.152 0.806 0.890 

Padel-E_State (79) CT4 2 0.201 0.771 0.826 0.256 0.667 0.822 

Klekota (4860) JT 4 0.205 0.775 0.816 0.179 0.806 0.836 

Pubchem (881) CT4 10 0.208 0.754 0.830 0.204 0.750 0.842 
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4.4.  Predicting biodegradability from the BOD values 

This modeling approach aimed to make a biodegradability classification based on the BOD values. First 
regression models were built in order to predict the BODs, then the compounds were categorized using the 
threshold of 60%. Compounds with BODs lower than 60% are considered as NRB while those exceeding this 
threshold were considered as RB. The 𝑘NN in regression was used in both weighted and non-weighted 
versions as explained in Section II.5.2.1. The used metric distances were the Manhattan, Minkowski and 
Euclidean. 

Several blocks of DRAGON descriptors were calculated, then GA was applied in order to select the 
most appropriate subsets. The parameter 𝑘 was optimized, from 1 to 10, in order to get the best 𝑄2 in 5-fold 

CV.  The models with the best 𝑄2 CV were selected. Their statistics were calculated also for the test set and 
summarized in Table 13.  

For this dataset, the Euclidean distance showed the best results. Thus, only the models using this 
distance were reported in Table 13. 

Table 13: Statistics of weighted and non weighted 𝒌NN regression models. 

Model Descs. 𝒌 
CV Test 

non-weighted weighted non-weighted weighted 

𝑸𝟐 RMSEC 𝑸𝟐 RMSEC 𝑸𝟐 RMSEP 𝑸𝟐 RMSEP 

1 24 8 55.9 32.55 58.3 31.67 45.6 37.39 45.6 37.39 
2 38 10 54.6 33.04 57.2 32.08 46.0 37.24 47.3 36.78 
3 42 10 53.8 33.33 56.6 32.29 46.4 37.08 47.9 36.57 
4 49 8 53.8 33.32 56.4 32.36 46.2 37.18 46.9 36.94 
5 15 6 52.9 33.64 55.1 32.84 47.9 36.60 49.5 36.02 

Desc.: the number of included descriptors. 

The statistics of the 5 models were not very high compared to usual regression models. However, when 
the predictions of the 1st model, which showed the best 𝑄2, were plotted against the experimental BOD values 
(Figure 8), the majority of the compounds seemed to be assigned to their correct classes. 

Figure 8 is, indeed, divided into 4 sections by the BOD threshold of 60%. The upper left square contains 
the NRBs predicted as RBs, the dots in lower left section represent the correctly predicted RBs while the 
correctly predicted NRBs are in the upper right section leaving the wrongly assigned RBs to the lower right 
side. It is clear that the ER in the compounds assigned as RBs is higher than NRBs. 

 

Figure 8: Predicted versus observed BOD values of the training set (black points) and test set (red points). 
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The predicted BOD values were after that used to make a classification of the training and test 
compounds using the predefined threshold. The results of the classification procedure are summarized in Table 
14.  

Table 14: Statistics of weighted and non weighted 𝒌NN classification models. 

Model 
CV Test 

non-weighted weighted non-weighted weighted 
ER Sp Sn ER Sp Sn ER Sp Sn ER Sp Sn 

1 0.160 0.761 0.919 0.145 0.789 0.922 0.156 0.750 0.938 0.159 0.750 0.932 
2 0.155 0.778 0.911 0.138 0.806 0.917 0.163 0.764 0.911 0.176 0.736 0.911 
3 0.153 0.785 0.910 0.143 0.799 0.915 0.159 0.750 0.932 0.159 0.750 0.932 
4 0.158 0.768 0.917 0.149 0.785 0.917 0.156 0.764 0.925 0.149 0.778 0.925 
5 0.165 0.746 0.924 0.159 0.757 0.926 0.149 0.778 0.925 0.152 0.778 0.918 

Albeit the average statistics in regression, the classification performance was acceptable compared to the 
previously developed models using the structural keys (Table 12). In particular, Model 1 and Model 5 showed 
interesting performances in addition to low numbers of descriptors. 

The ER for the weighted predictions showed a better performance in CV but it did not follow the same 
behavior for the test set. Hence, it can’t be concluded which method is performing better. It can also be noted 
that the sensitivity and specificity are not balanced as it is supposed to be for a good model that accurately 
predicts both classes. As noticed in Figure 8, all 5 models confirmed that the NRB compounds of this dataset 
are easier to predict than RBs. 
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5. Applicability domain of QSARs 
 

 

 

 

Defining the applicability domain of QSAR models is the third OECD principle and is one of the requirements 
for the predicted results to be used for regulatory purposes.  

The AD is defined by the chemical space covered by the training set of the model. This is equivalent to 
the descriptor space that describes the structures of the used compounds. Thus, the applicability of a model is 
limited to the structurally similar compounds to the training set. The model’s estimate is considered reliable 
when the chemical in query is interpolated within the AD. Any extrapolation of that defined space is associated 
with lower reliability in prediction. 

Different AD approaches have been proposed in the literature [200–202]. Depending on the adopted 
methodology in characterizing the interpolation descriptor space, the approaches discussed in this study can be 
categorized into range-based and geometric methods, distance based methods and probability density 
distributions. 

5.1.  Different approaches for defining the AD 

These approaches differ by the way the delimiters of the training set’s descriptor space is defined [200]. 

The simplest method is called the Bounding Box and is based on the range of individual descriptors. It 
considers that a compound is inside the AD only if its descriptors values are falling between the minimum and 
the maximum values of the corresponding descriptors of the training set. Another variety of the same approach 
considers the ranges of the principle components of a PCA instead of the original descriptors.  

Convex Hull is a geometric approach aiming to define the AD by the smallest convex space that can 
enclose the whole training set. This approach is similar to the range based since it defines only the external 
delimiters of the chemical space independently from the data distribution [200]. 

The most commonly used approaches are distance based. The concept of these methods is similar to 
that of the previously defined leverage approach. It consists of measuring the distance separating a query data-
point to the center of the training set, then compares it with a predefined threshold distance. If the test 
compound is less distant than the cut-off it can be considered inside the AD of the model. These approaches 
are considering that the further the test compound is from the center of the training set the less reliable the 
prediction is. The most usual distance measures employed for this purpose are Mahalanobis, Manhattan and the 
Euclidean distances. 
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Another approach tested in this work was the probability density distribution method. It consists of 
estimating the probability density and identifying the highest density region of the dataset. The created potential 
is at its highest value at each compound of the training set and decreases with the distance [200]. 

Each approach has its advantages and drawbacks. Even though, the behavior of an AD approach depends 
on the used model and the dataset it was applied on. The number of the detected compounds outside the AD is 
also a result of the predefined parameters. Consequently, it is up to the model developer and user to define the 
most appropriate approach to use for the specific model under evaluation. 

5.2.  Summary of the published study on the AD approaches 

The aim of this study was to provide a comparison between different approaches for defining the applicability 
domain. In this work, some of the previously introduced approaches, in addition to few other ones, were 
defined and their adopted algorithms explained. Then the selected approaches for the study were evaluated and 
compared varying their thresholds [203].  

The complete study is published and the article is provided in the Sahigara et al. [203].  
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6. Structure-activity landscapes 
 

 

 

 

According to the congenericity principle, structurally similar compounds are assumed to be associated with 
similar activities. However, the activity landscape of QSAR datasets is not always as smooth as thought. Similar 
molecules may have different activities leading to uneven landscape with Activity Cliffs (ACs). The presence of 
ACs in a given dataset can raise several problems for QSARs. The difference between the SAR landscapes was 
compared by Maggiora (2006) to the difference between “the gently rolling hills found on the Kansas prairie” and “the 
rugged landscapes of Utah’s Bryce Canyon” [282]. 

6.1. The Structure-Activity Landscape Index (𝐒𝐀𝐋𝐈) 

The first index for assessing the activity cliffs in a dataset was proposed by Maggiora (2006) and named the 
Structure-Activity Landscape Index (SALI) [282]. Later several different studies using the SALI index and 
graphical methods for characterizing the activity landscapes have been published [283–291].  

According to Maggiora (2006), ACs are expressed by the ratio of the difference in activity of two 
compounds over their “distance” in the chemical space [282]. Activity cliffs are described in terms of the 
Structure-Activity Landscape Index (SALI) as follows:  

𝑆𝐴𝐿𝐼𝑖𝑗 =
�𝐴𝑖 − 𝐴𝑗�

1.01 − 𝑠𝑖𝑚(𝑖, 𝑗)
  

where 𝐴𝑖and 𝐴𝑗 are the activities of the 𝑖th and the 𝑗th molecules, and 𝑠𝑖𝑚(𝑖, 𝑗) is the similarity coefficient 
between the two molecules.  

Figure 9 shows an example of the activity landscape according to the SALI index using the Euclidean 
distance. The dataset used for the plot consisted of 49 points obtained from two simulated variables (X) and a 
simulated activity (Y). The points placed in the 2D space and the responses were chosen in a way to create 
activity and similarity cliffs. The 3D symmetric plot vaguely emphasized the (bright) regions in the dataset 
associated with high activity cliffs. In particular, two regions can be noticed: one is corresponding to the points 
30-40 with the points 1-15 while the second one is corresponding to the points 40-49 with the points 20-40. 
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Figure 9: The activity cliffs of the simulated dataset using SALI. The 𝒙 and 𝒚 axis represent the number of samples while the 
𝒛-axis represents the difference in activity. 

6.2. Graphical methods for characterizing SAR landscapes  

6.2.1. The Structure-Activity Similarity (SAS) map 

One of the widely used methods to graphically explore the activity landscape is the Structure-Activity Similarity 
(SAS) map where activity similarity and structural similarity for each pair of compounds are plotted [292–294]. 
An example of the SAS map applied on the previously mentioned simulated dataset is given in Figure 10. 

The SAS map can be divided in four main regions (Figure 10). Pairs located in region I are characterized 
by low activity similarity and low structural similarity. Pairs with low activity similarity and high structural 
similarity are located in region II and therefore pairs of compounds in this region have a discontinuous SAR 
(activity cliffs). Data points located in region III are associated with low structural similarity and high similar 
activity; therefore this region is affected by structural cliffs. Finally, region IV identifies pairs of compounds 
with high structural similarity and high activity similarity and therefore correspond to continuous SAR. 

 

Figure 10: SAS map applied on the simulated dataset using the Euclidean distance. 
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6.2.2. The Patterson plot 

The Patterson plot is a method to graphically investigate the structurally similar compounds and their relative 
activity similarity [295]. As in the SAS map, the points in the Patterson plot represent the pairs of molecules in 
the dataset. The absolute differences in activities of the pairs of molecules are plotted in function of the 
distances between them in the descriptor space. For binary descriptors, such as substructural keys, the used 
similarity measure is converted to a distance measure for the abscise axis as 1 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦.  

If the dataset obey to the congenericity principle, the pairs of molecules will  appear in the lower triangle 
of the plot [296]. Thus in comparison to the SAS map, the structural cliffs and activity cliffs regions will switch 
places. 

To measure the degree to which the congenericity principle is respected, the “Patterson ratio” can be 
calculated. It is the ratio of the average absolute difference in activity for all the pairs of the dataset to the 
average absolute difference for the molecules with a similarity higher than a user defined threshold usually 0.7 
(or 0.3 for 1 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 distance). The higher the ratio value the lower activity cliffs present in the data.  

6.3.  Metric distances for investigating SAR landscapes 

6.3.1. The used metric distances. 

The metric distances employed in this work (in progress) in order to explore the SAR landscapes were the 
Euclidean, Manhattan and the Soergel distances. 

The Euclidean distance between two samples 𝑠 and 𝑡 in a 𝑝 dimensional space is calculated as follows: 

𝑑𝑠𝑡 = ��(𝑥𝑠𝑗 − 𝑥𝑡𝑗)2
𝑝

𝑗=1

 

The Manhattan distance between the two samples 𝑠 and 𝑡 in the same 𝑝 dimensional space is given by: 

𝑑𝑠𝑡 = ��𝑥𝑠𝑗 − 𝑥𝑡𝑗�
𝑝

𝑗=1

 

These two distances vary between 0 and ∞. Thus, a prior scaling of the data or a conversion of the 
distance to a similarity measure between 0 and 1 is often needed. The most simple way to calculate the 
similarity from the distance is: 

𝑆𝑖𝑚 =
1

1 + 𝑑𝑠𝑡
     0 ≤ 𝑆𝑖𝑚 ≤ 1 

The Soergel distance between the two samples 𝑠 and 𝑡 is calculated as follows: 

𝑑𝑠𝑡 = 1 −
∑ 𝑚𝑖𝑛{𝑥𝑠𝑗, 𝑥𝑡𝑗}
𝑝
𝑗=1

∑ 𝑚𝑎𝑥{𝑥𝑠𝑗, 𝑥𝑡𝑗}𝑝
𝑗=1

=
∑ |𝑥𝑠𝑗 − 𝑥𝑡𝑗|𝑝
𝑗=1

∑ 𝑚𝑎𝑥{𝑥𝑠𝑗, 𝑥𝑡𝑗}𝑝
𝑗=1

      0 ≤ 𝑑𝑠𝑡 ≤ 1 

where 𝑝 is the number of variables. 
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For binary data, the Soergel distance is the complement of the Jaccard-Tanimoto [297,298]. Thus, it 
could be possible to use the Soergel distance not only for real numbers but also for binary variables and mixed-
type data without the necessity to any weighting scheme.  

Since the Soergel distance varies between 0 and 1 and it was noticed that it is less sensitive to the scaling 
compared to the previous two metric distances. consequently, there is no need to scale the data before using the 
Soergel distance which is the case of many other distance measures. 

6.3.2. Comparison of the distances using the Patterson plot. 

A subset of 430 molecules was randomly extracted from the previously described logP dataset consisting of 
12505 molecules (see Section III.2.2). Using DRAGON software, the substructural descriptors of the block 
Atom-centered fragments were calculated. The total number of retained descriptors was 105. 

The Soergel, Euclidean and the Manhattan distances were used to make the Patterson plots. The 
different ratios were calculated using a threshold of 0.3. The red lines on the plots (Figure 11, Figure 12 and 
Figure 13) indicate the values used to calculate the Patterson ratio as explained in Section III.6.2.2. The average 
value and the 95 percentile of the SALI index are also calculated for each plot. The scaling is performed by 
dividing by maximum value of each descriptor. 

All pairs of molecules with both Euclidean and Manhattan distances, without scaling are shown to be far 
from each other (Figure 11a and Figure 12a). In these two plots, the Patterson ratio reached 7 which is a 
relatively high value for an heterogeneous dataset. This high value do not indicate an optimal SAR landscape 
for QSAR modeling since the interval of distances between 0 and 0.6 is not populated. While with the scaled 
data, the plots showed a Gaussian pattern with a maximum value of distance between the pairs not exceeding 
0.9 (Figure 11b and Figure 12b). In these two cases, the Patterson ratio is lower than the previous two plots 
which may indicate the presence of activity cliffs in the dataset. This is confirmed by the higher average and 95 
percentile values for the SALI index.  

 

Figure 11: The pairwise Euclidean distance without scaling (a) and scaled (b). thr: the used threshold for calculating the Patterson 
ratio; av SALI: the average value of the SALI index on all pairs; 95 perc: the 95 percentile of the SALI index on all pairs. 

a 
b 
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Figure 12: The pairwise Manhattan distance without scaling (a) and scaled (b). thr: the used threshold for calculating the 
Patterson ratio; av SALI: the average value of the SALI index on all pairs; 95 perc: the 95 percentile of the SALI index on all 
pairs. 

In all the mentioned figures, the pairs of molecules seem to have similar distances between them since all 
of them are located in a narrow interval of the 𝑥-axis. This is not the usual distribution of randomly selected 
datasets of such a number of molecules. This means that, probably, the Euclidean and the Manhattan distances 
in both scaled and non-scaled cases did not show the real distribution of the molecules in the descriptor space 
of the dataset. 

 

Figure 13: The pairwise Soergel distance on non-scaled (a) and scaled data (b). thr: the used threshold for calculating the 
Patterson ratio; av SALI: the average value of the SALI index on all pairs; 95 perc: the 95 percentile of the SALI index on all 
pairs. 

Unlike the two previous distances, the Soergel distance showed similar patterns with the scaled and non-
scaled data (Figure 13). This confirms the fact that Soergel distance is independent from the scaling. Also, the 
Patterson ratios, the average and 95 percentile of SALI index have similar values in both plots indicating a 
similar SAR landscape. 

The pairs of molecules are more distributed on the 𝑥-axis to occupy most of the distance interval 
between 0 and 1 which is the expected behavior for such number of different molecules.  

a b 

a b 
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The general pattern of these last two plots, showing an increasing difference in the activity with the 
increase in the distance between the pairs of molecules, indicates a relatively smooth landscape for this dataset. 
Hence, this dataset obeys to the congenericity principle which makes it adapted for QSAR modeling.  

The Soergel distance showed interesting properties making it more suitable for the investigation of the 
SAR landscapes compared to the Euclidean and the Manhattan distance measures because it is much less 
dependent on the scaling and does not require the calculation of the similarity, being already normalized 
between 0 and 1. As further work, the Soergel distance could be tested for SAR landscape exploring in the case 
of datasets with real and mixed-type values. 
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7. Conclusion 
 

 

 

 

The manufactured chemical substances provide a large range of services and tools supporting the modern 
lifestyle and economies. Nevertheless, the increased quantities of chemicals in the environment may endanger 
human health and the environment. Hence, there is a need to improve the scientific understanding of the 
effects of the chemicals that can find their way to the environment and end-up in the living organisms. 

In order to find the right balance between the benefits of chemicals and their side effects, their risk 
assessment is required by REACH. Since there is a need to waive animal testing and reduce the risk assessment 
costs, REACH promotes the use of alternative methods such as QSAR/QSPR models. 

In this thesis, the conceptual basics of QSAR modeling were explained. After that, the different steps to 
be taken during the analysis study, the technical details of the applied methodologies as well as newly tested 
molecular descriptors have been introduced. In addition, the validation and the reliability assessment techniques 
were described, with reference to the REACH requirements.  

The mentioned steps for QSAR modeling have been followed in the applications section of this work. 
Three endpoints with interest to REACH legislation including the physicochemical property logP the 
bioaccumulation and the biodegradation, have been modeled.  

LogP is known to be an important parameter for a multitude of biological activities and environmental 
fate of chemicals. This property have been subject for two case studies in this work. The first was aiming to 
predict the logP values for a set of chemicals with unknown experimental responses within the log-1000 
challenge involving several research groups. A number of QSPR models have been developed for the purpose 
and the best three models were selected and submitted. These models showed good and robust statistics in 
fitting, cross-validation and predictive ability on the test set. In addition the predictions for the contest dataset 
were benchmarked with commonly used models from the literature (MlogP and AlogP). The second case study 
was intended to test a new approach for variable selection coupling the GAs with the MCDM methods on the 
Syracuse database for logP. The developed algorithm applied on PLS resulted in a model with reasonable 
compromise between the predictive ability and the complexity of the model parameters usually required for 
such big datasets. Hence, the Utility function used to score the models demonstrated its usefulness in selecting 
the best models when several parameters have to be optimized simultaneously. In this study, the quality of the 
data, which is an important factor in QSAR modeling, was a result of the use of the automated KNIME 
workflow.  

Since the bioaccumulation is one of the REACH most required endpoints for environmental fate 
assessment, this endpoint was modeled for a specific group of chemicals. Being a list of widely used POPs 
during the last decades, PBDEs are the centre of a number of studies involving toxicity and environmental side 
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effects of these chemicals. The three commonly used factors for assessing the bioaccumulation of chemicals, 
(BCF, BAF and BMF) have been modeled using different data sources. Then, the values of the three factors 
have been predicted for the whole set of 209 BDE congeners [103]. The developed models showed good 
predictive ability and their applicability domain demonstrated a maximal coverage of the 209 BDE congeners. 
Especially for BCF, which is the most important factor between the three mentioned, the proposed model in 
this study presented better results on PBDEs in comparison with global models from the literature. 

The last modeled endpoint of interest to REACH regulation was the biodegradability. In this study, a 
special interest was given to the preparation of the dataset before the modeling step. Then three models and 
their consensus have been proposed using different classification methods: PLSDA, 𝑘NN and SVM. The 
developed models were validated in three steps using cross-validation, a test set left out from the same dataset 
and an external validation set gathered from different sources. The models showed a good predictive ability in 
comparison with previous published studies in the literature [102]. The thorough data screening contributed in 
a significant way to good results of the models. Moreover,  the consensus modeling also improved the 
predictive ability of the developed models by considering the three classification methods at the same time. 

In addition to the modeling results, methodological aspects of QSARs have been discussed. Theory and 
applications of applicability domain approaches were explained in a comparison study [203].  

In addition, the SALI index for the assessment of the structure-activity landscapes have been introduced. 
Then, it was used to compare the usefulness of three metric distances (Euclidean, Manhattan, Soergel) for the 
characterization of activity cliffs in QSAR data. The Soergel distances showed interesting features that will be 
further investigated for the purpose. 

Even though, the biological activity is a complex process involving multiple parameters, the developed 
QSAR models showed good estimation of the predicted endpoints especially when the data is well curated and 
the appropriate tools applied. Thus QSAR/QSPR modeling is a useful technique for filling the gap of 
knowledge about chemicals, thus it is useful for regulatory purposes. 

This work was an attempt to contribute to the implementation of the European regulation on chemicals 
REACH. The studies were conducted within the European project ECO-ChemOinformatics (http://www.eco-
itn.eu/), in collaboration with different partner groups participating to the same project as well as other related, 
ongoing and finished, European projects. 

http://www.eco-itn.eu/
http://www.eco-itn.eu/
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Bender, A.; Marín, R. M.; Giulianotti, M. A.; Pinilla, 
C.; Houghten, R. A. Characterization of activity 
landscapes using 2D and 3D similarity methods: 
consensus activity cliffs. J. Chem. Inf. Model. 2009, 49, 
477–491. 

287. Namasivayam, V.; Bajorath, J. Searching for 
Coordinated Activity Cliffs Using Particle Swarm 
Optimization. J. Chem. Inf. Model. 2012, 52, 927–934. 

288. Peltason, L.; Iyer, P.; Bajorath, J. Rationalizing 
three-dimensional activity landscapes and the 
influence of molecular representations on landscape 
topology and the formation of activity cliffs. J. Chem. 
Inf. Model. 2010, 50, 1021–1033. 

289. Vogt, M.; Huang, Y.; Bajorath, J. From activity 
cliffs to activity ridges: informative data structures for 
SAR analysis. J. Chem. Inf. Model. 2011, 51, 1848–1856. 

290. Wassermann, A. M.; Bajorath, J. Chemical 
substitutions that introduce activity cliffs across 
different compound classes and biological targets. J. 
Chem. Inf. Model. 2010, 50, 1248–1256. 

291. Iyer, P.; Stumpfe, D.; Vogt, M.; Bajorath, J.; 
Maggiora, G. M. Activity Landscapes, Information 
Theory, and Structure - Activity Relationships. Mol. 
Informatics 2013, n/a–n/a. 

292. Shanmugasundaram, V.; Maggiora, G. M. 
Characterizing property and activity landscapes using 
an information-theoretic approach. In; Cinf-032; 
American Chemical Society: Washington, DC: 
Chicago, IL, United States, 2001. 

293. Medina-Franco, J. L. Scanning Structure-Activity 
Relationships with Structure-Activity Similarity and 
Related Maps: From Consensus Activity Cliffs to 
Selectivity Switches. J. Chem. Inf. Model. 2012, 52, 
2485–2493. 

294. Méndez-Lucio, O.; Pérez-Villanueva, J.; Castillo, 
R.; Medina-Franco, J. L. Identifying Activity Cliff 
Generators of PPAR Ligands Using SAS Maps. Mol. 
Informatics 2012, 31, 837–846. 

295. Patterson, D. E.; Cramer, R. D.; III, F.; Clark, R. 
D.; Weinberger, L. E. Neighborhood behavior: a 
useful concept for validation of “molecular diversity” 
descriptors. J Med Chem 1996, 39, 3049– 3059. 

296. Sheridan, R. P.; Feuston, B. P.; Maiorov, V. N.; 
Kearsley, S. K. Similarity to molecules in the training 
set is a good discriminator for prediction accuracy in 
QSAR. J. Chem. Inf. Comput. Sci. 2004, 44, 1912–1928. 

297. Willett, P.; Barnard, J. M.; Downs, G. M. 
Chemical Similarity Searching. J. Chem. Inf. Comput. Sci. 
1998, 38, 983–996. 

298. Ashton, M.; Barnard, J.; Casset, F.; Charlton, M.; 
Downs, G.; Gorse, D.; Holliday, J.; Lahana, R.; 
Willett, P. Identification of Diverse Database Subsets 
using Property-Based and Fragment-Based Molecular 
Descriptions. Quant. Struct.-Act. Relationships 2002, 21, 
598–604. 

 


	Contents
	List of Figures
	List of Tables
	Preface
	The ECO project
	Thesis goals and structure

	Part I: Introduction
	1. POPs and pathways to the environment
	1.1. General properties of POPs
	1.2. Pathways to the environment

	2. Regulation of chemicals in Europe
	2.1. REACH, the European legislation about chemicals
	2.2. The European Chemicals Agency (ECHA)
	2.3. Mode of action within REACH

	3. QSARS for regulatory purposes
	3.1. QSARs and REACH
	3.2. OECD Principles for the Validation of QSARs


	Part II: Tools and Methods
	1. Introduction
	2. Data acquisition and curing
	2.1. Data sources
	2.2.  Data curing
	2.1.1. ChemBioFinder
	2.1.2. KNIME


	3. Molecular descriptors
	3.1. Introduction
	3.2. Analysis of new molecular descriptors
	3.2.1. Spectral indices
	3.2.2. Matrix-based descriptors
	3.2.3. Vectorial descriptors

	3.3.  Software for descriptor calculation
	3.3.1. DRAGON
	3.3.2. SubMat
	3.3.3. The Chemistry Development Kit
	3.3.4. PaDEL


	4. Variable selection techniques
	4.1.  Stepwise forward selection
	4.2.  Genetic Algorithms (GAs)

	5. Modeling methods in QSAR
	5.1. Unsupervised methods for exploratory data analysis
	5.1.1. Principal Component Analysis (PCA)
	5.1.2. Multi-Dimensional Scaling (MDS)

	5.2. Supervised learning methods for modeling
	5.2.1. Regression methods
	5.2.1.1. The k Nearest Neighbors in regression
	5.2.1.2. Multiple linear regression
	5.2.1.3.  Partial Least Squares (PLS)

	5.2.2. Classification methods
	5.2.2.1. The k Nearest Neighbors (kNN)
	5.2.2.2. Partial Least Squares Discriminant Analysis (PLSDA)
	5.2.2.3.  Support Vector Machines (SVM)



	6. Goodness of fit measures and validation methods
	6.1. Validation methods
	6.2. Regression parameters
	6.2.1. Goodness of fit indices.
	6.2.2. Goodness of prediction indices.

	6.3. Classification parameters

	7. Applicability domain of models
	8. Multi-criteria decision making in model selection

	Part III: Results and Discussion
	1. Introduction
	2. Octanol/Water Partition Coefficient
	2.1.  Case study 1: the logP-1000 contest
	2.1.1. Data set up and curing
	2.1.2. Molecular descriptor calculation and selection
	2.1.3. Results and discussion
	2.1.3. Conclusion

	2.2.  Case study 2: modeling PHYSPROP dataset for logP
	2.2.1. Data set up and curing
	2.2.2. Molecular descriptors calculation
	2.2.3. Results and discussion
	2.2.4. Conclusion


	3. Bioaccumulation
	3.1.  Definitions
	3.2.  Assessing bioaccumulation by QSARs
	3.2.1. QSAR models based on experimental descriptors
	3.2.2. QSAR models based on theoretical molecular descriptors.

	3.3.  Case study: QSARs for assessing bioaccumulation
	3.3.1. Polybrominated diphenyl ethers (PBDEs)
	3.3.2. Results of PBDEs bioaccumulation models


	4. Biodegradability
	4.1.  QSARs for assessing biodegradability of chemicals.
	4.2. Summary of the published study on biodegradability
	4.3.  Substructural keys for predicting biodegradability
	4.4.  Predicting biodegradability from the BOD values

	5. Applicability domain of QSARs
	5.1.  Different approaches for defining the AD
	5.2.  Summary of the published study on the AD approaches

	6. Structure-activity landscapes
	6.1. The Structure-Activity Landscape Index (𝐒𝐀𝐋𝐈)
	6.2. Graphical methods for characterizing SAR landscapes
	6.2.1. The Structure-Activity Similarity (SAS) map
	6.2.2. The Patterson plot

	6.3.  Metric distances for investigating SAR landscapes
	6.3.1. The used metric distances.
	6.3.2. Comparison of the distances using the Patterson plot.


	7. Conclusion
	References



<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /None

  /Binding /Left

  /CalGrayProfile (Dot Gain 20%)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Error

  /CompatibilityLevel 1.4

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Default

  /DetectBlends true

  /DetectCurves 0.0000

  /ColorConversionStrategy /CMYK

  /DoThumbnails false

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams false

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments true

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts true

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 300

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages true

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 300

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 300

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 300

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages true

  /MonoImageDownsampleType /Bicubic

  /MonoImageResolution 1200

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects false

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile ()

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<



    /BGR <>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /CZE <>

    /DAN <>

    /DEU <>

    /ESP <>

    /ETI <>

    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

    /GRE <>



    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

    /HUN <>

    /ITA <>

    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /LTH <>

    /LVI <>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

    /NOR <>

    /POL <>

    /PTB <>

    /RUM <>

    /RUS <>

    /SKY <>

    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

    /SUO <>

    /SVE <>

    /TUR <>

    /UKR <>

    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

  >>

  /Namespace [

    (Adobe)

    (Common)

    (1.0)

  ]

  /OtherNamespaces [

    <<

      /AsReaderSpreads false

      /CropImagesToFrames true

      /ErrorControl /WarnAndContinue

      /FlattenerIgnoreSpreadOverrides false

      /IncludeGuidesGrids false

      /IncludeNonPrinting false

      /IncludeSlug false

      /Namespace [

        (Adobe)

        (InDesign)

        (4.0)

      ]

      /OmitPlacedBitmaps false

      /OmitPlacedEPS false

      /OmitPlacedPDF false

      /SimulateOverprint /Legacy

    >>

    <<

      /AddBleedMarks false

      /AddColorBars false

      /AddCropMarks false

      /AddPageInfo false

      /AddRegMarks false

      /ConvertColors /ConvertToCMYK

      /DestinationProfileName ()

      /DestinationProfileSelector /DocumentCMYK

      /Downsample16BitImages true

      /FlattenerPreset <<

        /PresetSelector /MediumResolution

      >>

      /FormElements false

      /GenerateStructure false

      /IncludeBookmarks false

      /IncludeHyperlinks false

      /IncludeInteractive false

      /IncludeLayers false

      /IncludeProfiles false

      /MultimediaHandling /UseObjectSettings

      /Namespace [

        (Adobe)

        (CreativeSuite)

        (2.0)

      ]

      /PDFXOutputIntentProfileSelector /DocumentCMYK

      /PreserveEditing true

      /UntaggedCMYKHandling /LeaveUntagged

      /UntaggedRGBHandling /UseDocumentProfile

      /UseDocumentBleed false

    >>

  ]

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [612.000 792.000]

>> setpagedevice



