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Introduction 
 

The toxic effects of environmental chemicals and the adverse effects of drugs albeit probably 

caused by similar molecular mechanisms have been traditionally studied separately. The 

integration of the two data types will increase the coverage of chemical space on toxic effects 

and thus improve the applicability of predictive models. In this project we will collect and 

integrate toxicological data from environmental chemicals and drugs with the aim to build 

predictive models of chemical toxicological effects applicable to novel compounds. 

 

Materials and Methods 
 

In this project, the following workflow has been derived for acquiring the data: 

1. Mine various publicly available datasets containing data about toxic effects of 

environmental chemicals and side effects of drugs in human. 

2. Map the observations made in these datasets to common ontology. The resource used 

in case of this project was Unified Medical Language System (UMLS) with effects 

represented as concepts. Each concept is represented with unique ID and has a very 

defined location in the hierarchy of ontology. 

3. Create a custom database containing parsed data to allow for proper comparison, 

analysis, and later reuse. 

 

Fig.1 Data collection approach. 

Currently, 3 resources have been mined so far, and these include: 

 ToxRefDB (http://actor.epa.gov/toxrefdb/faces/Home.jsp) 
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 SIDER (http://sideeffects.embl.de/) 

 Histopathology data from rat liver xenobiotic and pharmacology database (Ganter et 

al, 2005) 

For the mapping of these data, the combination of the following dictionaries (within UMLS) 

was used: COSTAR (Computer-Stored Ambulatory Records), CHV (Consumer Health 

Vocabulary) and MSH (Medical Subject Headings). 

In total, data was obtained for 1475 compounds, described in terms of 1748 non-redundant 

concepts (effects) for 4 organisms. Records total up to around 129 000.  

 

 

Fig. 2 Distribution of data across different organisms. 

Then, assuming completeness of data (i.e. all compounds have been effectively tested for all 

collected side effects/toxicological end points), we applied Quantitative Structure-Activity 

Relationship (QSAR) modelling approaches to build predictive models for each concept (side 

effect/toxicological end point).  

In this approach, the set of compounds annotated with a concept of interest are modelled 

against all other compounds from the entire dataset which are treated as negative control. 

This strategy has been tested utilizing OCHEM, a modelling environment developed in the 

group of Dr. Tetko. 
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Fig. 3 Illustration of approach to build predictive models for the data. 

Currently, we set a threshold of minimum 100 active molecules per concept when creating 

training sets for our models. This constraint helped increasing the statistical power of achieved 

models but on the other hand, limited the number of concepts to be modelled to 233. 

 

  

Fig. 4 After setting a threshold on a minimum number of molecules per concept to 100, 233 

concepts were available to model. 

Within the chosen concepts, majority of the indications (over 77%) stemmed from SIDER, with 

the following distribution across all sources: 
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Fig. 5 Distribution of data according to source of indication for the chosen side-effects.  

SIDER, being a database of human side effects, heavily contributes to an overall change of 

species distribution in our training set of selected side effects. 74.74% of indications at hand 

come from observations in human with the remaining 25.26% almost entirely in rat with 

negligible contribution from mouse and rabbit. 

 

Curation of molecules 
 

A careful consideration was given to the quality of obtained molecule structures via automated 

means of OCHEM (http://ochem.eu/) which relied heavily on PubChem 

(http://pubchem.ncbi.nlm.nih.gov/) in this matter. The obtained structures were validated 

against structures obtained from ChemSpider (http://www.chemspider.com/) via use of web 

services. There were some 180 molecules where suspicion was raised due to disagreement 

between alternatively fetched indications. For these, a manual curation was done and revealed 

that in more than 34% (62 molecules) the discrepancy was true and was not due to i.e. slightly 

different stereochemistry.  At this I have also found that in some cases none of the sources 

provided the correct structures. All erroneous structures were manually corrected. In 

disputable cases, ChemSpider provided correct structures for 42 compounds, while PubChem 

did it for 20. Thus, ChemSpider is generally more reliable.  
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At this point, EState and AlogPS descriptors as well as those from Dragon 6.0 package were 

calculated to find out which of the molecules are suitable for modelling. Following this analysis 

we exclude very large molecules (like insulin) or molecules without carbon component 

(inorganic) for which calculation of descriptors is currently not possible/supported. Thanks to 

this approach, I found that 27 of the molecules in the dataset are not suitable for QSAR due to 

aforementioned reasons, and excluded them from further consideration in modelling. 

 

Molecule Set at hand 
 

The set of EState and AlogPS descriptors will be referred to as 2D while Dragon 6.0 descriptors 

as 3D due to the requirement of the 3D structure of molecules for the calculation of some 

descriptors. Three dimensional molecule structures were obtained using CORINA. Additionally, 

standard filters and procedures that are routinely applied at this point were used, i.e. pre-

processing of molecules (standardization, neutralization, removal of salts), unsupervised 

filtering of redundant descriptors (variance smaller than 0.01, grouping descriptors that have 

pair-wise Pearson's correlation coefficient R larger than 0.95, elimination of descriptors with 

less than 2 unique values). On average, 263 descriptors were calculated in 2D set, and 1673 for 

3D one. 

Later, this 3D set of descriptors was normalized, and used for distance matrix calculation 

between the molecules in the set (Euclidean) and unsupervised clustering (average linkage). 

This analysis was applied to obtain a picture of heterogeneity of assembled molecule set. The 

following heat map was calculated according to the described procedure:  
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Fig. 6 Heatmap of molecules in dataset with visible dendrograms showing several clusters of 

highly similar molecules. 
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An analysis of enrichment of categorical annotations was also performed for molecules in the 

dataset utilizing the MBRole utility (http://csbg.cnb.csic.es/mbrole/index.jsp). The most 

interesting (from the perspective of this research) annotations were used for this analysis, 

including Biological role and Chemical role and application (based on ChEBI 

http://www.ebi.ac.uk/chebi/ and KEGG http://www.genome.jp/kegg/). The functions of 

molecules, which appeared most frequently in the dataset, are shown in Fig.7. 

 

Fig. 7 Some of the most common annotated functions of molecules in the dataset. 
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Results 
 

To date, a number of models were built utilizing different combinations of 2D and 3D 

descriptors and machine learning algorithms. Amongst machine learning algorithms we find 

Associating Neural Networks (ANN), Decision Trees (DT), K-Nearest Neighbours (KNN) and 

Random Forests (RF). For each combination of algorithm and set of descriptors, 233 models 

were trained on the same data and model statistics were obtained via use of automated 

workflow developed in KNIME (http://www.knime.com/). Predictions were cross-validated 

using stratified bagging with 64 models per training. Below are presented results averaged 

across each combination with highlight of best- and worse- approaches. On top of standard 

model statistics like Accuracy, positive predictive value (PPV), log odds ratio (LOR), sensitivity, 

specificity, false positive ratio (FPV); we also calculated balanced accuracy. It is to account for 

the fact that error for specificity of models is likely to be two times lower that we observe due 

to our assumption about non-active compounds. In many cases, discovery of a serious 

deleterious effect in animal prevents from further testing for human effects. It has also been 

reported that pharmaceutical companies, being the main source of data for this study, often 

conceal inconvenient results of drug tests [Angell M.] such as adverse effects that we are 

trying to predict with our approach. Nevertheless, this assumption had to be made but we are 

accounting for this in our analysis by inclusion of the error-balancing score: 

Model 

cohort 

name 

Feature 

Accuracy PPV LOR Sensitivity Specificity FPR 

Balanced 

accuracy 

ann+2d 68.58 0.271 10.13 57.64 70.59 0.294 71.47 

ann+3d 72.02 0.306 10.24 62.55 73.54 0.265 74.66 

dt+2d 73.41 0.311 10.40 58.20 75.88 0.241 73.07 

dt+3d 75.46 0.323 10.55 55.56 78.74 0.213 72.47 

knn+2d 68.21 0.274 10.07 55.38 70.29 0.297 70.26 

knn+3d 52.60 0.238 8.71 79.61 48.06 0.519 76.82 

rf+2d 79.29 0.360 10.98 47.49 84.81 0.152 69.95 

rf+3d 79.74 0.362 11.07 44.27 85.98 0.140 68.63 

average 71.16 0.31 10.27 57.59 73.49 0.27 72.17 

Fig. 8 Summary of built models. Green and yellow backgrounds highlight best- and worst- 

performing approaches respectively within category given in the header of table. 

In terms of sensitivity and balanced accuracy, the 2 characteristics most unbiased by negatives, 

the K-Nearest Neighbours approach with the use of 3D descriptors provided on average the 
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best solution. However, usable models for the following side effects were built with all 

combinations of machine learning algorithm and set of descriptors used: 

Consistently well 

predicted side 

effect 

Sources of indication ANN+3D characteristics 

SIDER ToxRefDB 
Ganter et 

al. 
Sensitivity Specificity 

Balanced 

Accuracy 

Excessive body 

weight gain 0 108 292 
83.75 86.77 88.57 

Absolute organ 

weight change, 

NOS 0 319 0 

83.65 85.06 88.09 

Body weight 

decrease 1 381 0 
82.29 85.93 87.63 

Decreased RBC 0 166 0 81.44 80.80 85.92 

Hypertrophy 0 190 0 77.42 80.99 83.96 

Nausea 685 0 0 78.66 78.37 83.92 

Cholesterol 

increase 0 158 0 
75.95 80.62 83.13 

Enlargement, 

NOS 0 131 0 
75.94 79.62 82.88 

Discoloration, 

NOS 0 148 0 
76.51 77.59 82.65 

Headache 680 1 0 76.50 74.93 81.98 

Emesis 629 0 0 75.92 75.33 81.79 

Platelet change, 

NOS 0 102 0 
73.27 79.66 81.55 

Diarrhoea 588 2 0 73.31 74.88 80.38 

Fig. 9 Details on consistently well-predicted side effects and example statistics for the ANN+3D 

approach. 

In total, setting an arbitrary threshold of 80 for balanced accuracy, I found 79 individual 

models to speak of numbers. The top scoring effects (Fig. 9) represent a good mixture of the 3 

sources of annotations with predominant SIDER annotations and least contribution from the 

rat liver xenobiotic response repertoire database. This gives some idea about the quality of the 

annotations from sources at hand. Unfortunately, the overlap between the sources was not 
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very significant with only one side effect from this list (“Excessive body weight gain”) observed 

to share annotations across 2 sources.  

From the 233 adverse effects chosen to model, only a few were predicted very poorly (i.e. 

below arbitral threshold of 60 for balanced accuracy in), with the worst performance achieved 

when using 2D descriptors and Random Forest algorithm (data not shown). These included 

such effects as: Ulcers, Cysts, Ecchymosis, Neck pain, Dysuria and Nocturia – with most 

annotations from human. These adverse effects are probably caused by a very diverse set of 

compounds that perhaps is too complicated to be captured within the descriptors used. Also, 

the very complex mechanisms behind occurrence of these effects might contribute to the 

overall inability of QSAR here.  

 

Correlations in models 
When taking into consideration individual models for chosen combinations of machine 

learning approach and set of descriptors, one could try to look for correlations between model 

statistics and number of active compounds: 

 

Fig. 10 Seeking for possible relationships between model statistics and number of active 

compounds using example of ANN trained on 3D descriptors’ values. 
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Presented above is an example plot with summary values of models trained using combination 

of ANN and 3D descriptors - similar picture is seen for other combinations of algorithm and 

descriptor set. The positive correlation seems apparent for the positive predictive value (PPV 

in the plot) with R2 = ~0.90 when approximating this relationship with least squares linear 

regression. PPV is the relation of true positives to all positive calls. Based on that definition and 

pattern seen in our models, we conclude that number of active compounds is absolutely 

decisive for the final quality of the model in terms of PPV with best models having most 

number of active compounds. This model behaviour could be explained by the more 

comprehensive compound annotation for these popular concepts or underreporting of less 

popular effects. 

In similar fashion, one could plot individual models onto specificity against sensitivity graph: 

 

Fig.11 Specificity against sensitivity comparison dot plot for models built based on 3D 

descriptors. 
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Fig. 12 Specificity against sensitivity comparison dot plot for models built based on 2D 

descriptors. 

According to the above analysis, all models using 3D descriptors, and most using 2D ones (2 

outliers), predict better than random (points above hyphened orange diagonal, where 

completely randomly predicting models would align) with different approaches occupying 

different regions of the plot. For our use, models having best true positive rate, are favoured. 

This analysis further supported K-Nearest Neighbours approach as the best solution in terms of 

average performance. It was also found that augmentation of 3D descriptors for training using 

KNN algorithm provided relatively most substantial improvements in the models’ fit (Fig. 8) as 

indicated by occupancy of more favoured areas of the sensitivity versus specificity plot by the 

resulting predictive models (Fig. 11 vs Fig. 12). 

 

Discussion 
 

The goal of this study was to find out if QSAR, a chemoinformatics approach, is feasible for 

answering questions of Systems Biology of Small Molecules. Combination of data mining and 

computational chemistry modelling was proved working together as intended by production of 

several good quality models. This study has also shed light onto which of the available machine 

learning algorithms perform best in this setting and which compound features (types of 

descriptors) provide best basis for training of models, namely KNN and ANN in combination 

with Dragon 6.0 descriptors. However, the approach is not flawless and contains a big area for 

improvements within. Better mapping strategies, inclusion of hierarchy information of adverse 
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effects in the modelling process, reduction of redundancy due to highly similar molecules, 

definition of optimal distance of molecules from the model, to mention just a few potential 

traits to explore in follow-up studies.  

In the future, when the method is refined, one could implement this approach into an easy to 

use tool that would, given a structure of novel compound, be able to give reliable predictions 

about potential adverse effects it may cause for prioritization in testing. Ideally, one would like 

to predict very reliably, however, a living organism response to a compound is often too 

complex to predict solely based on molecular structure. Into play come genetic makeup and 

environment, 2 extremely important factors that are hard to account for in QSAR. 

Nevertheless, our attempts give better results day by day as the state of the art improves and 

we thereby hope in many beneficial uses for this rather successful approach.  
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