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AIM 

Developing a QSAR (Quantitative Structure–Activity Relationship) model capable of predicting 

immunological properties of biopolymers, based on their physicochemical characteristics. 

BIOPOLYMERS 

The polymers were  synthesized using (where applicable) a 20:80 monomer – crosslinker ratio1 

combinations of various chemicals (Table I). 

TABLE I POLYMER COMPOSITION 
Polymer Monomer Crosslinker 

P1 MAA DAP 

P2 MAA DVB 

P3 MAA EGDMA 

P4 IPAAm EGDMA 

P5 Styrene EGDMA 

P6 HEMA EGDMA 

PS Styrene – 

PVC Vinyl chloride – 

Glass – – 

 

QSAR 

The QSAR (Quantitative Structure–Activity Relationship) methodology is based on the 

assumption that there is a close connection between the structure of a molecule and its 

physicochemical properties and biological activity. It is possible to quantify that relationship by 

means of chemometric methods, using theoretical and empirical descriptors (sometimes 

referred to as ‘predictor’ variables, X) and experimental endpoint values, the response 

variable, Y.  

The resulting equation, or model, mathematically describes the relationship between 

molecular and biological properties of compounds. It is also capable of predicting the 

properties of whole new groups of substances, on the condition that they are structurally 

similar to the ones the model was based on. 

DESCRIPTORS 

Two types of descriptors were utilized: experimental and computational. Five experimental 

descriptors had been previously determined for polymers P1-P6: particle surface area, particle 

pore diameter, swelling, specific swelling and contact angle (Drop-snake method). Their values 

were used in the analysis without any transformation. Since no experimental descriptor were 

available for PVC, PS and glass particles, those samples were omitted during the modeling 

process. 

In order to obtain molecular descriptors for the biopolymers, 3D structures of all monomers 

and crosslinkers were built with the help of ACD-ChemSketch (Table II). Subsequent geometry 
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optimization was performed using MOPAC2012 computational package via gabedit 2.4.4. All 

calculations were done at the PM6 level of precision. 

TABLE II OPTIMIZED STRUCTURES OF MONOMER AND CROSSLINKER MOLECULES 

  

N,N-diacryloylpiperazine, DAP divinylbenzene, DVB 

  

ethylene glycol dimethacrylate, EGDMA 2-hydroxyethyl methacrylate, HEMA 

  

N-isopropyl acrylamide, IPAAm methacrylic acid, MAA 

  

styrene vinyl chloride 

 

Following that, molecular descriptors were generated for with employing Dragon6 software.  

Four blocks of descriptors were chosen as the basic set: constitutional indices, functional group 
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counts, molecular properties and P_VSA-like descriptors. Their initial number was reduced 

from 262 to 78  (Table III)  – those with constant, near constant, missing or null values were 

discarded.  

As the descriptors had been calculated for single monomer and crosslinker molecules, their 

weighted average values (Dw) were used for modeling. According to the polymer composition 

ratios, weight w1 = 0.2 was assigned to monomer descriptors (Dm) and weight w2 = 0.8 to 

crosslinker descriptors (Dc). 

                

TABLE III DESCRIPTOR LIST 
No. Name Description 

1 PSA particle surface area 

2 PD particle pore diameter 

3 SW swelling 

4 SPSW specific swelling 

5 CA contact angle (Drop-snake method) 

6 MW molecular weight 

7 AMW average molecular weight 

8 Sv sum of atomic van der Waals volumes (scaled on Carbon atom) 

9 Se sum of atomic Sanderson electronegativities (scaled on Carbon atom) 

10 Sp sum of atomic polarizabilities (scaled on Carbon atom) 

11 Si sum of first ionization potentials (scaled on Carbon atom) 

12 Mv mean atomic van der Waals volume (scaled on Carbon atom) 

13 Me mean atomic Sanderson electronegativity (scaled on Carbon atom) 

14 Mp mean atomic polarizability (scaled on Carbon atom) 

15 Mi mean first ionization potential (scaled on Carbon atom) 

16 nAT number of atoms 

17 nSK number of non-H atoms 

18 nBT number of bonds 

19 nBO number of non-H bonds 

20 nBM number of multiple bonds 

21 SCBO sum of conventional bond orders (H-depleted) 

22 RBN number of rotatable bonds 

23 RBF rotatable bond fraction 

24 nDB number of double bonds 

25 nH number of Hydrogen atoms 

26 nC number of Carbon atoms 

27 nO number of Oxygen atoms 

28 nHet number of heteroatoms 

29 H% percentage of H atoms 

30 C% percentage of C atoms 

31 N% percentage of N atoms 

32 nCsp3 number of sp3 hybridized Carbon atoms 

33 nCsp2 number of sp2 hybridized Carbon atoms 

34 P_VSA_LogP_1 P_VSA-like on LogP, bin 1 

35 P_VSA_LogP_2 P_VSA-like on LogP, bin 2 

36 P_VSA_LogP_4 P_VSA-like on LogP, bin 4 

37 P_VSA_LogP_5 P_VSA-like on LogP, bin 5 

38 P_VSA_LogP_7 P_VSA-like on LogP, bin 7 

39 P_VSA_m_1 P_VSA-like on mass, bin 1 

40 P_VSA_m_2 P_VSA-like on mass, bin 2 
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41 P_VSA_m_3 P_VSA-like on mass, bin 3 

42 P_VSA_v_1 P_VSA-like on van der Waals volume, bin 1 

43 P_VSA_v_2 P_VSA-like on van der Waals volume, bin 2 

44 P_VSA_v_3 P_VSA-like on van der Waals volume, bin 3 

45 P_VSA_e_1 P_VSA-like on Sanderson electronegativity, bin 1 

46 P_VSA_e_2 P_VSA-like on Sanderson electronegativity, bin 2 

47 P_VSA_e_5 P_VSA-like on Sanderson electronegativity, bin 5 

48 P_VSA_p_1 P_VSA-like on polarizability, bin 1 

49 P_VSA_p_2 P_VSA-like on polarizability, bin 2 

50 P_VSA_p_3 P_VSA-like on polarizability, bin 3 

51 P_VSA_i_2 P_VSA-like on ionization potential, bin 2 

52 P_VSA_i_3 P_VSA-like on ionization potential, bin 3 

53 P_VSA_s_2 P_VSA-like on I-state, bin 2 

54 P_VSA_s_3 P_VSA-like on I-state, bin 3 

55 P_VSA_s_4 P_VSA-like on I-state, bin 4 

56 P_VSA_s_6 P_VSA-like on I-state, bin 6 

57 SPAM average span R 

58 MEcc molecular eccentricity 

59 SPH spherosity 

60 ASP asphericity 

61 PJI3 3D Petitjean shape index 

62 L/Bw length-to-breadth ratio by WHIM 

63 nCp number of terminal primary C(sp3) 

64 nCconj number of non-aromatic conjugated C(sp2) 

65 nR=Cp number of terminal primary C(sp2) 

66 nR=Ct number of aliphatic tertiary C(sp2) 

67 nHAcc number of acceptor atoms for H-bonds (N,O,F) 

68 Uc unsaturation count 

69 Ui unsaturation index 

70 Hy hydrophilic factor 

71 AMR Ghose-Crippen molar refractivity 

72 TPSA(NO) topological polar surface area using N,O polar contributions 

73 TPSA(Tot) topological polar surface area using N,O,S,P polar contributions 

74 MLOGP Moriguchi octanol-water partition coeff. (logP) 

75 MLOGP2 squared Moriguchi octanol-water partition coeff. (logP^2) 

76 ALOGP Ghose-Crippen octanol-water partition coeff. (logP) 

77 ALOGP2 squared Ghose-Crippen octanol-water partition coeff. (logP^2) 

78 SAtot total surface area from P_VSA-like descriptors 

79 SAacc surface area of acceptor atoms from P_VSA-like descriptors 

80 Vx McGowan volume 

81 VvdwMG van der Waals volume from McGowan volume 

82 VvdwZAZ van der Waals volume from Zhao-Abraham-Zissimos equation 

83 PDI packing density index 

 

MODELED PROPERTIES  

Two types of biological responses were used as endpoints: levels of proteins adsorbed on 

polymer surface and concentrations of immunomarkers2 induced in blood while in contact 

with polymer particles – 56 characteristics in total.  
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Endpoints with less than three sample measurements per polymer as well as those with 

unequal number of measurements were discarded. The rest was divided into four blocks in 

accordance to the experimental method used and type of immunological response (Table IV). 

Due to the large range of variable values (the difference between the largest and smallest 

values amounted to 3 orders of magnitude), a logarithmic transformation of the data was 

conducted:  

              

TABLE IV GROUPING OF MODELED PROPERTIES. GREYED-OUT AREAS INDICATE DISCARDED ENDPOINTS 
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METHODS 

A hybrid GA-MLR technique was used to develop the model. All the chemometric calculations 

were performed with the PLS_Toolbox 6.7 in combination with Matlab 7.11 (R2010b). 

GENETIC ALGORITHM 

Genetic algorithm variable selection is a technique that helps identify a subset of the 

measured variables that are, for a given problem, the most useful for a precise and accurate 

regression model. Given an X-block of predictor data and a Y-block of values to be predicted, 

one can choose a random subset of variables from X and, through the use of cross-validation, 

determine the root-mean-square error of cross validation (RMSECV) obtained when using only 

that subset of variables in a regression model. Genetic algorithms use this approach iteratively 

to locate the variable subset (or subsets) which gives the lowest RMSECV.  

(Matlab) PLS_Toolbox 6.7: 

PLS Workspace Browser >> Analysis Tools >> Other >> GA variable selection 

SIZE OF POPULATION: 92 

WINDOW WIDTH: 1 

% INITIAL TERMS: 30 

TARGET MIN/MAX: 0/8 

PENALTY SLOPE: 0.001 

MAX GENERATIONS: 200 
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% AT CONVERGENCE: 90 

MUTATION RATE: 0.01 

CROSSOVER: double 

REGRESSION CHOICE: MLR 

CROSS-VALIDATION: Contiguous 

# OF SPLITS: 5 

# OF ITERATIONS: 1 

REPLICATE RUNS: 5 

MULTIPLE LINEAR REGRESSION 

Multiple linear regression attempts to model the relationship between two or more 

explanatory variables (X) and a response variable (y) by fitting a linear equation to observed 

data. Every value of the independent variable x is associated with a value of the dependent 

variable y. The population regression line for n explanatory variables x1, x2, ... , xn is defined to 

be 

                                    

This line describes how the mean response μy changes with the explanatory variables. The 

observed values for y vary about their means y and are assumed to have the same standard 

deviation σ. The fitted values b0, b1, ..., bn estimate the parameters β0, β1,…,βn of the 

population regression line. 

(Matlab) PLS_Toolbox 6.7: 

PLS Workspace Browser >> Analysis Tools >> REGRESSION >> MLR – Multiple Linear Regression 

PREPROCESSING: none 

CROSS-VALIDATION: contiguous block 

# OF DATA SPLITS: 6 

 

CALIBRATION 

To measure how well the model represents empirical data, determination coefficient R2 and 

the root mean square error of calibration RMSEC is calculated. The closer the R2 value is to 1 

and the smaller RMSEC, the better the model fitting. 

         √
∑             

 
  

where: 
    – experimental values of the Y variable 

      – estimated values of the Y variable 
  – total number of objects in the data set 
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where: 

    – experimental values of the Y variable 

      – estimated values of the Y variable 

 ̅    – mean experimental values of the Y variable 
  – total number of objects in the data set 

CROSS-VALIDATION 

Cross validation is a very useful tool that serves two critical functions in chemometrics - it 

enables an assessment of the optimal complexity of a model and allows an estimation of the 

performance of a model when it is applied to unknown data.  

For a given data set, cross validation involves a series of experiments, each of which involves 

the removal of a subset of objects from a dataset (the test set), construction of a model using 

the remaining objects in the dataset (the model building set), and subsequent application of 

the resulting model to the removed objects. This way, each experiment involves testing a 

model with objects that were not used to build the model. A typical cross-validation procedure 

usually involves more than one sub-validation experiment, each of which involves the selection 

of different subsets of samples for model building and model testing.  

The robustness of a model can be assessed by calculating the determination coefficient R2
CV 

and the root mean square error of cross-validation RMSECV. The closer the R2
CV value is to 1 and 

the smaller RMSECV, the better greater the flexibility (robustness) of the model. 

 

          √
∑                

 
  

where: 

    – experimental values of the Y variable 

         – estimated values of the temporary excluded (cross-validated) sample 
   – total number of objects in the data set 
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where: 

    – experimental values of the Y variable 

         – estimated values of the temporary excluded (cross-validated) sample 

 ̅    – mean experimental values of the Y variable 
  – total number of objects in the data set 

 

RESULTS 

BLOCK A: PROTEIN SURFACE ADSORPTION LEVEL MEASUREMENTS 

The GA-MLR found 16 unique models with 4 to 8 variables (Figure 1). RMSECV ranged from 

0.158 to 1.7×1010 logarithmic units. 
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FIGURE 1. GA-MLR RESULTS FOR BLOCK A 

Even though GA-MLR variable selection offers ready models, sometimes a manual 

selection based on the GA-MLR results with smallest RMSECV may yield an even better set of 

descriptors. In this case, the final model contained six predictor variables (Figure 2). The green 

and purple colors mark positive and negative regression coefficients, respectively. The blue 

and red colors in the ‘Model statistics’ section represent the quality of the models – blue fields 

indicate models with RMSE and R2 values close to optimal, red – models of very poor quality. 

 

FIGURE 2. MLR MODELING RESULTS – BLOCK A 

Those six descriptors were used to estimate each of the 20 biological endpoints, with the only 

difference being the regression coefficients. E.g.: 

log(C1INH) = 0.101 nCsp2 + 0.006 P_VSA_LogP_4 - 0.037 P_VSA_m_2 + 0.015 P_VSA_s_6 + 

0.016 nHAcc      + 0.082 ALogP 
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log(a2-M) = -0.001 nCsp2 + 0.012 P_VSA_LogP_4 -0.014 P_VSA_m_2 + 0.035 P_VSA_s_6 -

0.853 nHAcc    -0.187 ALogP 

The quality of each individual model varied from very good (C1INH) to quite low. It is not 

surprising, since the GA-MLR method tries to find descriptor sets with lowest average RMSECV – 

it will therefore, over-fit some endpoints and undercompensate its estimation for others. 

As can be seen in Figure 2, for most of the proteins, the adsorption levels are proportional to 

the number of hybridized sp2 atoms in the monomer/crosslinker molecules (nCsp2), sum of van 

der Waals surface area with low valence electron availability (P_VSA_s_6), and sum of van der 

Waals surface area with Ghose-Crippen logP in the range of [-0.25; 0) (P_VSA_LogP_4). 

The protein adsorption levels are inversely proportional to the number of acceptor atoms for 

H-bonds (nHAcc), sum of van der Waals surface area with atomic weight between in the range 

[10,12) and the Ghose-Crippen logP (ALogP). 

BLOCK B: CONTACT ACTIVATION PROTEIN LEVELS 

The GA-MLR found 12 unique models with 2 to 5 variables (Figure 3). RMSECV ranged from 

0.443 to 0.619 logarithmic units. 

 

FIGURE 3. GA-MLR RESULTS FOR BLOCK B 

The final model contained three molecular descriptors (Figure 4). There are no distinctive 

trends within the modeling block – the modeled values are split more or less evenly between 

direct and reverse proportion to the sum of van der Waals surface area with Ghose-Crippen 

logP in the range of [0; 0.25) (P_VSA_LogP_5), sum of van der Waals surface area with 

polarizability in the range of [0.4; 1) (P_VSA_LogP_2) and the number of aliphatic tertiary 

carbon atoms C~sp2 (nR=Ct). 
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FIGURE 4. MLR MODELING RESULTS - BLOCK B 

BLOCK C: CONCENTRATIONS OF INFLAMMATION MEDIATORS 

The GA-MLR found 19 unique models with 2 to 8 variables (Figure 3). RMSECV ranged from 

0.288 to 7.68×109 logarithmic units, which is expected when trying to building a universal 

model. 

 

FIGURE 5. GA-MLR RESULTS - BLOCK C 

All but one of the immunoprotein concentrations increase proportionally to the sum of atomic 

polarizabilities scaled on carbon atoms (Sp). The sum of van der Waals surface areas 

correspondent to van deer Waals volume in the range of [0.5; 1), the number of aliphatic 

tertiary carbon atoms C~sp2 (nR=Ct) and the squared Ghose-Crippen octanol-water partition 

coefficient (ALogP2) cause an increase and decrease of protein concentration in an equal 

amount of cases (Figure 6). 
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FIGURE 6. MLR MODELING RESULTS - BLOCK C 

BLOCK D: BLOOD CHAMBER IMMUNOMARKER CONCENTRATION MEASUREMENTS 

The GA-MLR found 15 unique models with 2 to 5 variables (Figure 7). RMSECV ranged from 0.37 

to 1.38 logarithmic units. 

 

FIGURE 7.GA-MLR RESULTS - BLOCK D 

As was the case with Block C, Block D endpoint concentrations are proportional to sum of 

atomic polarizabilities scaled on carbon atoms (Sp). The sum of van der Waals surface area 

with Ghose-Crippen logP in the range of [-0.25; 0) (P_VSA_LogP_4), sum of van der Waals 

surface area with Sanderson electronegativity in the range of [1; 1.1) (P_VSA_e_2) and number 

of terminal primary C(sp2) (nR=Cp) are ambiguous in their influence (Figure 8). 
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FIGURE 8. MLR MODELING RESULTS - BLOCK D 

CONCLUSIONS 

It is possible to create a general model predicting immunological properties of polymers based 

on their chemical descriptors. However it is not a simple task – the more endpoints are being 

modeled at once, the worse the accuracy of the predictions.  

The general trend in all of the utilized descriptors seems to be pointing towards quantification 

of the electrostatic properties of the monomer/crossinker molecules as well as their 

hydrophobicity (logP). There are certain descriptor which featured in models more than once:  

nR=Ct, P_VSA_LogP_4, Sp – they might make a good starting point in future biopolymer design 

attempts.  

Quite disappointingly, hardly any experimental descriptors were present in the GA-MLR results 

and none of them have been chosen in any of models. 

Perhaps, in the future, an alternative modeling method might be more effective or at least a 

different method of descriptor calculations. 
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